aaditya commited on
Commit
7795f39
·
1 Parent(s): 97f7a77

corrected leaderboard code

Browse files
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
Makefile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: style format
2
+
3
+
4
+ style:
5
+ python -m black --line-length 119 .
6
+ python -m isort .
7
+ ruff check --fix .
8
+
9
+
10
+ quality:
11
+ python -m black --check --line-length 119 .
12
+ python -m isort --check-only .
13
+ ruff check .
README.md CHANGED
@@ -1,13 +1,36 @@
1
  ---
2
- title: Test Leaderboard
3
- emoji: 🐢
4
- colorFrom: pink
5
- colorTo: red
6
  sdk: gradio
7
- sdk_version: 4.15.0
8
  app_file: app.py
9
- pinned: false
10
  license: apache-2.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Demo Leaderboard
3
+ emoji: 🥇
4
+ colorFrom: green
5
+ colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 4.4.0
8
  app_file: app.py
9
+ pinned: true
10
  license: apache-2.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+ Most of the variables to change for a default leaderboard are in env (replace the path for your leaderboard) and src/display/about.
16
+
17
+ Results files should have the following format:
18
+ ```
19
+ {
20
+ "config": {
21
+ "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
22
+ "model_name": "path of the model on the hub: org/model",
23
+ "model_sha": "revision on the hub",
24
+ },
25
+ "results": {
26
+ "task_name": {
27
+ "metric_name": score,
28
+ },
29
+ "task_name2": {
30
+ "metric_name": score,
31
+ }
32
+ }
33
+ }
34
+ ```
35
+
36
+ Request files are created automatically by this tool.
app.py CHANGED
@@ -1,9 +1,47 @@
1
  import gradio as gr
2
  import pandas as pd
3
-
4
  from apscheduler.schedulers.background import BackgroundScheduler
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- from src.display.css_html_js import custom_css
7
 
8
  from src.display.about import (
9
  CITATION_BUTTON_LABEL,
@@ -11,11 +49,9 @@ from src.display.about import (
11
  EVALUATION_QUEUE_TEXT,
12
  INTRODUCTION_TEXT,
13
  LLM_BENCHMARKS_TEXT,
14
- LLM_BENCHMARKS_DETAILS,
15
- FAQ_TEXT,
16
  TITLE,
17
  )
18
-
19
  from src.display.utils import (
20
  BENCHMARK_COLS,
21
  COLS,
@@ -29,41 +65,56 @@ from src.display.utils import (
29
  WeightType,
30
  Precision
31
  )
32
-
33
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
34
-
35
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
36
  from src.submission.submit import add_new_eval
37
 
38
- from src.display.utils import Tasks
39
-
40
- from huggingface_hub import snapshot_download
41
-
42
- ## ------- ## ------- ## ------- ## ------- ## ------- ## ------- ## ------- ## ------- ## ------- ## ------- ## ------- ## -------##
43
 
44
  def restart_space():
45
- API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
- def ui_snapshot_download(repo_id, local_dir, repo_type, tqdm_class, etag_timeout):
48
- try:
49
- print(f"local_dir for snapshot download = {local_dir}")
50
- snapshot_download(repo_id=repo_id, local_dir=local_dir, repo_type=repo_type, tqdm_class=tqdm_class, etag_timeout=etag_timeout)
51
- except Exception:
52
- print(f"ui_snapshot_download failed. restarting space...")
53
- restart_space()
54
 
55
  # Searching and filtering
56
- def update_table(hidden_df: pd.DataFrame, columns: list, type_query: list, precision_query: list, size_query: list, query: str):
57
- print(f"hidden_df = {hidden_df}")
58
- show_deleted = True
 
 
 
 
 
 
59
  filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
60
-
61
- print(f"filtered_df = {filtered_df}")
62
  filtered_df = filter_queries(query, filtered_df)
63
  df = select_columns(filtered_df, columns)
64
- print(f"df = {df}")
65
  return df
66
 
 
67
  def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
68
  return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
69
 
@@ -79,7 +130,8 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
79
  ]
80
  return filtered_df
81
 
82
- def filter_queries(query: str, filtered_df: pd.DataFrame):
 
83
  final_df = []
84
  if query != "":
85
  queries = [q.strip() for q in query.split(";")]
@@ -98,22 +150,18 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
98
  return filtered_df
99
 
100
 
101
- def filter_models(df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool) -> pd.DataFrame:
102
-
103
-
104
- print("aa this is an example", df)
105
- print(f"filter_models()'s df: {df}\n")
106
  # Show all models
107
- if show_deleted:
108
- filtered_df = df
109
- else: # Show only still on the hub models
110
- filtered_df = df[df[AutoEvalColumn.still_on_hub.name] is True]
 
111
 
112
  type_emoji = [t[0] for t in type_query]
113
- print("aa this is an example", df, AutoEvalColumn.model_type_symbol.name, "thhhthht")
114
- print("type", type_emoji)
115
  filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
116
- print("bb", filtered_df)
117
  filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
118
 
119
  numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
@@ -124,34 +172,21 @@ def filter_models(df: pd.DataFrame, type_query: list, size_query: list, precisio
124
  return filtered_df
125
 
126
 
127
- ## ------- ## ------- ## ------- ## ------- ## ------- ## ------- ## ------- ## ------- ## ------- ## ------- ## ------- ## -------
128
-
129
- ui_snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30)
130
- ui_snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30)
131
-
132
- print(f"COLS = {COLS}")
133
-
134
-
135
- raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) # k the problem is that the results are only saved in _bk dirs.
136
- leaderboard_df = original_df.copy()
137
- print(f"leaderboard_df = {leaderboard_df}")
138
-
139
-
140
- ################################################################################################################################
141
  demo = gr.Blocks(css=custom_css)
142
  with demo:
143
  gr.HTML(TITLE)
144
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
145
 
146
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
147
-
148
- # toggle break 1: this tab just RENDERS existing result files on remote repo.
149
- with gr.TabItem("Benchmarks", elem_id="llm-benchmark-tab-table", id=0):
150
-
151
  with gr.Row():
152
  with gr.Column():
153
  with gr.Row():
154
- search_bar = gr.Textbox(placeholder=" 🔍 Model search (separate multiple queries with `;`)", show_label=False, elem_id="search-bar",)
 
 
 
 
155
  with gr.Row():
156
  shown_columns = gr.CheckboxGroup(
157
  choices=[
@@ -168,8 +203,12 @@ with demo:
168
  elem_id="column-select",
169
  interactive=True,
170
  )
171
-
 
 
 
172
  with gr.Column(min_width=320):
 
173
  filter_columns_type = gr.CheckboxGroup(
174
  label="Model types",
175
  choices=[t.to_str() for t in ModelType],
@@ -192,41 +231,41 @@ with demo:
192
  elem_id="filter-columns-size",
193
  )
194
 
195
- # leaderboard_table = gr.components.Dataframe(
196
- # value=leaderboard_df[
197
- # [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
198
- # + shown_columns.value
199
- # + [AutoEvalColumn.dummy.name]
200
- # ] if leaderboard_df.empty is False else leaderboard_df,
201
- # headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
202
- # datatype=TYPES,
203
- # elem_id="leaderboard-table",
204
- # interactive=False,
205
- # visible=True,
206
- # column_widths=["2%", "20%"]
207
- # )
208
  leaderboard_table = gr.components.Dataframe(
209
- # value=leaderboard_df,
210
  value=leaderboard_df[
211
  [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
212
  + shown_columns.value
213
  + [AutoEvalColumn.dummy.name]
214
- ] if leaderboard_df.empty is False else leaderboard_df,
215
  headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
216
  datatype=TYPES,
217
  elem_id="leaderboard-table",
218
  interactive=False,
219
  visible=True,
220
- # column_widths=["2%", "20%"]
221
  )
 
222
  # Dummy leaderboard for handling the case when the user uses backspace key
223
  hidden_leaderboard_table_for_search = gr.components.Dataframe(
224
- value=original_df[COLS] if original_df.empty is False else original_df,
225
  headers=COLS,
226
  datatype=TYPES,
227
- visible=False
228
  )
229
- for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size]:
 
 
 
 
 
 
 
 
 
 
 
 
 
230
  selector.change(
231
  update_table,
232
  [
@@ -235,62 +274,63 @@ with demo:
235
  filter_columns_type,
236
  filter_columns_precision,
237
  filter_columns_size,
 
238
  search_bar,
239
  ],
240
  leaderboard_table,
241
  queue=True,
242
  )
243
 
244
- # toggle break 2: Submission -> runs add_new_eval() (actual evaluation is done on backend when backend-cli.py is run.)
 
 
245
  with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
246
- # with gr.Column():
247
- # with gr.Row():
248
- # gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
249
-
250
- # with gr.Column():
251
- # with gr.Accordion(
252
- # f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
253
- # open=False,
254
- # ):
255
- # with gr.Row():
256
- # finished_eval_table = gr.components.Dataframe(
257
- # value=finished_eval_queue_df,
258
- # headers=EVAL_COLS,
259
- # datatype=EVAL_TYPES,
260
- # row_count=5
261
- # )
262
- # with gr.Accordion(
263
- # f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
264
- # open=False,
265
- # ):
266
- # with gr.Row():
267
- # running_eval_table = gr.components.Dataframe(
268
- # value=running_eval_queue_df,
269
- # headers=EVAL_COLS,
270
- # datatype=EVAL_TYPES,
271
- # row_count=5
272
- # )
273
-
274
- # with gr.Accordion(
275
- # f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
276
- # open=False,
277
- # ):
278
- # with gr.Row():
279
- # pending_eval_table = gr.components.Dataframe(
280
- # value=pending_eval_queue_df,
281
- # headers=EVAL_COLS,
282
- # datatype=EVAL_TYPES,
283
- # row_count=5
284
- # )
285
  with gr.Row():
286
  gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
287
 
288
  with gr.Row():
289
  with gr.Column():
290
  model_name_textbox = gr.Textbox(label="Model name")
291
- # You can use the revision parameter to point to the specific commit hash when downloading.
292
  revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
293
- private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
294
  model_type = gr.Dropdown(
295
  choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
296
  label="Model type",
@@ -304,7 +344,7 @@ with demo:
304
  choices=[i.value.name for i in Precision if i != Precision.Unknown],
305
  label="Precision",
306
  multiselect=False,
307
- value="float32",
308
  interactive=True,
309
  )
310
  weight_type = gr.Dropdown(
@@ -314,51 +354,40 @@ with demo:
314
  value="Original",
315
  interactive=True,
316
  )
317
-
318
-
319
- requested_tasks = gr.CheckboxGroup(
320
- choices=[ (i.value.col_name, i.value) for i in Tasks],
321
-
322
- label="Select tasks",
323
- elem_id="task-select",
324
- interactive=True,
325
- )
326
-
327
-
328
  base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
329
 
330
  submit_button = gr.Button("Submit Eval")
331
  submission_result = gr.Markdown()
332
-
333
- # we need to add task specification argument here as well.
334
  submit_button.click(
335
  add_new_eval,
336
  [
337
  model_name_textbox,
338
-
339
- requested_tasks, # is this a list of str or class Task? i think it's Task.
340
-
341
  base_model_name_textbox,
342
  revision_name_textbox,
343
  precision,
344
- private,
345
  weight_type,
346
  model_type,
347
  ],
348
- submission_result)
349
-
350
-
351
-
352
- # demo.launch()
353
 
354
- ####
 
 
 
 
 
 
 
 
355
 
356
  scheduler = BackgroundScheduler()
357
-
358
- scheduler.add_job(restart_space, "interval", seconds=6 * 60 * 60)
359
-
360
  scheduler.start()
361
- # demo.queue(default_concurrency_limit=40).launch()
 
362
 
363
- # demo.launch(show_api=False, enable_queue=False)
364
- demo.launch() # TypeError: Blocks.launch() got an unexpected keyword argument 'enable_queue'
 
 
 
1
  import gradio as gr
2
  import pandas as pd
 
3
  from apscheduler.schedulers.background import BackgroundScheduler
4
+ from huggingface_hub import snapshot_download
5
+
6
+ # import os
7
+
8
+ # # Define the folders to delete
9
+ # folders_to_delete = ['eval-results', 'eval-queue']
10
+
11
+ # import shutil
12
+
13
+ # # Delete the folders and their contents
14
+ # deleted_folders = []
15
+ # nonexistent_folders = []
16
+
17
+ # for folder in folders_to_delete:
18
+ # if os.path.exists(folder) and os.path.isdir(folder):
19
+ # shutil.rmtree(folder) # This removes the directory and its contents
20
+ # deleted_folders.append(folder)
21
+ # else:
22
+ # nonexistent_folders.append(folder)
23
+
24
+
25
+
26
+ # import subprocess
27
+ # import signal
28
+
29
+ # # Find and kill processes running on port 7878
30
+ # try:
31
+ # # Find process using port 7878
32
+ # output = subprocess.check_output(["lsof", "-ti", "tcp:7878"]).decode().strip()
33
+ # if output:
34
+ # # Split the output in case there are multiple PIDs
35
+ # pids = output.split('\n')
36
+ # for pid in pids:
37
+ # # Kill each process
38
+ # os.kill(int(pid), signal.SIGKILL)
39
+ # result = "Processes running on port 7878 have been killed."
40
+ # else:
41
+ # result = "No processes are running on port 7878."
42
+ # except Exception as e:
43
+ # result = f"An error occurred: {str(e)}"
44
 
 
45
 
46
  from src.display.about import (
47
  CITATION_BUTTON_LABEL,
 
49
  EVALUATION_QUEUE_TEXT,
50
  INTRODUCTION_TEXT,
51
  LLM_BENCHMARKS_TEXT,
 
 
52
  TITLE,
53
  )
54
+ from src.display.css_html_js import custom_css
55
  from src.display.utils import (
56
  BENCHMARK_COLS,
57
  COLS,
 
65
  WeightType,
66
  Precision
67
  )
68
+ from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
69
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
 
 
70
  from src.submission.submit import add_new_eval
71
 
 
 
 
 
 
72
 
73
  def restart_space():
74
+ API.restart_space(repo_id=REPO_ID, token=TOKEN)
75
+
76
+ try:
77
+ print(EVAL_REQUESTS_PATH)
78
+ snapshot_download(
79
+ repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
80
+ )
81
+ except Exception:
82
+ restart_space()
83
+ try:
84
+ print(EVAL_RESULTS_PATH)
85
+ snapshot_download(
86
+ repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
87
+ )
88
+ except Exception:
89
+ restart_space()
90
+
91
+
92
+ raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
93
+ leaderboard_df = original_df.copy()
94
+
95
+ (
96
+ finished_eval_queue_df,
97
+ running_eval_queue_df,
98
+ pending_eval_queue_df,
99
+ ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
100
 
 
 
 
 
 
 
 
101
 
102
  # Searching and filtering
103
+ def update_table(
104
+ hidden_df: pd.DataFrame,
105
+ columns: list,
106
+ type_query: list,
107
+ precision_query: str,
108
+ size_query: list,
109
+ show_deleted: bool,
110
+ query: str,
111
+ ):
112
  filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
 
 
113
  filtered_df = filter_queries(query, filtered_df)
114
  df = select_columns(filtered_df, columns)
 
115
  return df
116
 
117
+
118
  def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
119
  return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
120
 
 
130
  ]
131
  return filtered_df
132
 
133
+
134
+ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
135
  final_df = []
136
  if query != "":
137
  queries = [q.strip() for q in query.split(";")]
 
150
  return filtered_df
151
 
152
 
153
+ def filter_models(
154
+ df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
155
+ ) -> pd.DataFrame:
 
 
156
  # Show all models
157
+ filtered_df = df
158
+ # if show_deleted:
159
+ # filtered_df = df
160
+ # else: # Show only still on the hub models
161
+ # filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
162
 
163
  type_emoji = [t[0] for t in type_query]
 
 
164
  filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
 
165
  filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
166
 
167
  numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
 
172
  return filtered_df
173
 
174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
  demo = gr.Blocks(css=custom_css)
176
  with demo:
177
  gr.HTML(TITLE)
178
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
179
 
180
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
181
+ with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
 
 
 
182
  with gr.Row():
183
  with gr.Column():
184
  with gr.Row():
185
+ search_bar = gr.Textbox(
186
+ placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
187
+ show_label=False,
188
+ elem_id="search-bar",
189
+ )
190
  with gr.Row():
191
  shown_columns = gr.CheckboxGroup(
192
  choices=[
 
203
  elem_id="column-select",
204
  interactive=True,
205
  )
206
+ with gr.Row():
207
+ deleted_models_visibility = gr.Checkbox(
208
+ value=True, label="Show gated/private/deleted models", interactive=True
209
+ )
210
  with gr.Column(min_width=320):
211
+ #with gr.Box(elem_id="box-filter"):
212
  filter_columns_type = gr.CheckboxGroup(
213
  label="Model types",
214
  choices=[t.to_str() for t in ModelType],
 
231
  elem_id="filter-columns-size",
232
  )
233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
  leaderboard_table = gr.components.Dataframe(
 
235
  value=leaderboard_df[
236
  [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
237
  + shown_columns.value
238
  + [AutoEvalColumn.dummy.name]
239
+ ],
240
  headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
241
  datatype=TYPES,
242
  elem_id="leaderboard-table",
243
  interactive=False,
244
  visible=True,
245
+ column_widths=["2%", "33%"]
246
  )
247
+
248
  # Dummy leaderboard for handling the case when the user uses backspace key
249
  hidden_leaderboard_table_for_search = gr.components.Dataframe(
250
+ value=original_df[COLS],
251
  headers=COLS,
252
  datatype=TYPES,
253
+ visible=False,
254
  )
255
+ search_bar.submit(
256
+ update_table,
257
+ [
258
+ hidden_leaderboard_table_for_search,
259
+ shown_columns,
260
+ filter_columns_type,
261
+ filter_columns_precision,
262
+ filter_columns_size,
263
+ deleted_models_visibility,
264
+ search_bar,
265
+ ],
266
+ leaderboard_table,
267
+ )
268
+ for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
269
  selector.change(
270
  update_table,
271
  [
 
274
  filter_columns_type,
275
  filter_columns_precision,
276
  filter_columns_size,
277
+ deleted_models_visibility,
278
  search_bar,
279
  ],
280
  leaderboard_table,
281
  queue=True,
282
  )
283
 
284
+ with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
285
+ gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
286
+
287
  with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
288
+ with gr.Column():
289
+ with gr.Row():
290
+ gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
291
+
292
+ with gr.Column():
293
+ with gr.Accordion(
294
+ f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
295
+ open=False,
296
+ ):
297
+ with gr.Row():
298
+ finished_eval_table = gr.components.Dataframe(
299
+ value=finished_eval_queue_df,
300
+ headers=EVAL_COLS,
301
+ datatype=EVAL_TYPES,
302
+ row_count=5,
303
+ )
304
+ with gr.Accordion(
305
+ f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
306
+ open=False,
307
+ ):
308
+ with gr.Row():
309
+ running_eval_table = gr.components.Dataframe(
310
+ value=running_eval_queue_df,
311
+ headers=EVAL_COLS,
312
+ datatype=EVAL_TYPES,
313
+ row_count=5,
314
+ )
315
+
316
+ with gr.Accordion(
317
+ f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
318
+ open=False,
319
+ ):
320
+ with gr.Row():
321
+ pending_eval_table = gr.components.Dataframe(
322
+ value=pending_eval_queue_df,
323
+ headers=EVAL_COLS,
324
+ datatype=EVAL_TYPES,
325
+ row_count=5,
326
+ )
327
  with gr.Row():
328
  gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
329
 
330
  with gr.Row():
331
  with gr.Column():
332
  model_name_textbox = gr.Textbox(label="Model name")
 
333
  revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
 
334
  model_type = gr.Dropdown(
335
  choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
336
  label="Model type",
 
344
  choices=[i.value.name for i in Precision if i != Precision.Unknown],
345
  label="Precision",
346
  multiselect=False,
347
+ value="float16",
348
  interactive=True,
349
  )
350
  weight_type = gr.Dropdown(
 
354
  value="Original",
355
  interactive=True,
356
  )
 
 
 
 
 
 
 
 
 
 
 
357
  base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
358
 
359
  submit_button = gr.Button("Submit Eval")
360
  submission_result = gr.Markdown()
 
 
361
  submit_button.click(
362
  add_new_eval,
363
  [
364
  model_name_textbox,
 
 
 
365
  base_model_name_textbox,
366
  revision_name_textbox,
367
  precision,
 
368
  weight_type,
369
  model_type,
370
  ],
371
+ submission_result,
372
+ )
 
 
 
373
 
374
+ with gr.Row():
375
+ with gr.Accordion("📙 Citation", open=False):
376
+ citation_button = gr.Textbox(
377
+ value=CITATION_BUTTON_TEXT,
378
+ label=CITATION_BUTTON_LABEL,
379
+ lines=20,
380
+ elem_id="citation-button",
381
+ show_copy_button=True,
382
+ )
383
 
384
  scheduler = BackgroundScheduler()
385
+ scheduler.add_job(restart_space, "interval", seconds=1800)
 
 
386
  scheduler.start()
387
+ demo.queue(default_concurrency_limit=40).launch()
388
+
389
 
390
+ # scheduler = BackgroundScheduler()
391
+ # scheduler.add_job(restart_space, "interval", seconds=6 * 60 * 60)
392
+ # scheduler.start()
393
+ # demo.queue().launch()
app_empty.py DELETED
@@ -1,7 +0,0 @@
1
- import gradio as gr
2
-
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
-
6
- # iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- # iface.launch()
 
 
 
 
 
 
 
 
backend-cli.py DELETED
@@ -1,187 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- import os
4
- import json
5
-
6
- import random
7
- from datetime import datetime
8
-
9
- from src.backend.run_eval_suite import run_evaluation
10
- from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
11
- from src.backend.sort_queue import sort_models_by_priority
12
-
13
-
14
- from src.backend.envs import EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Tasks, Task, num_fewshots
15
-
16
- from src.backend.manage_requests import EvalRequest
17
- from src.leaderboard.read_evals import EvalResult
18
-
19
- from src.envs import QUEUE_REPO, RESULTS_REPO, API
20
- from src.utils import my_snapshot_download
21
-
22
- import time
23
-
24
- import logging
25
- import pprint
26
- import argparse
27
-
28
-
29
- # def get_subdirectories(path):
30
- # subdirectories = []
31
- # # Get all entries in the directory
32
- # entries = os.listdir(path)
33
- # for entry in entries:
34
- # # Check if the entry is a directory
35
- # if os.path.isdir(os.path.join(path, entry)):
36
- # subdirectories.append(entry)
37
- # return subdirectories
38
-
39
- # parser = argparse.ArgumentParser(description="Get subdirectory names")
40
- # parser.add_argument("include_path", help="Path to the directory", nargs='?', default=None)
41
- # args = parser.parse_args()
42
-
43
- # # = get_subdirectories(args.include_path)
44
-
45
-
46
-
47
-
48
- def my_set_eval_request(api, eval_request, set_to_status, hf_repo, local_dir):
49
- for i in range(10):
50
- try:
51
- set_eval_request(api=api, eval_request=eval_request, set_to_status=set_to_status, hf_repo=hf_repo, local_dir=local_dir)
52
- return
53
- except Exception:
54
- time.sleep(60)
55
- return
56
-
57
-
58
- logging.getLogger("openai").setLevel(logging.WARNING)
59
-
60
- logging.basicConfig(level=logging.ERROR)
61
- pp = pprint.PrettyPrinter(width=80)
62
-
63
- PENDING_STATUS = "PENDING"
64
- RUNNING_STATUS = "RUNNING"
65
- FINISHED_STATUS = "FINISHED"
66
- FAILED_STATUS = "FAILED"
67
-
68
- TASKS_HARNESS = [task.value for task in Tasks]
69
-
70
- # starts by downloading results and requests. makes sense since we want to be able to use different backend servers!
71
- my_snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
72
- my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
73
-
74
-
75
- def sanity_checks():
76
- print(f'Device: {DEVICE}')
77
-
78
- # pull the eval dataset from the hub and parse any eval requests
79
- # check completed evals and set them to finished
80
- my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
81
- check_completed_evals(api=API, checked_status=RUNNING_STATUS, completed_status=FINISHED_STATUS,
82
- failed_status=FAILED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND,
83
- hf_repo_results=RESULTS_REPO, local_dir_results=EVAL_RESULTS_PATH_BACKEND)
84
- return
85
-
86
-
87
- def request_to_result_name(request: EvalRequest) -> str:
88
-
89
- org_and_model = request.model.split("/", 1)
90
- if len(org_and_model) == 1:
91
- model = org_and_model[0]
92
- res = f"{model}_{request.precision}"
93
- else:
94
- org = org_and_model[0]
95
- model = org_and_model[1]
96
- res = f"{org}_{model}_{request.precision}"
97
- return res
98
-
99
- # doesn't make distinctions for tasks since the original code runs eval on ALL tasks.
100
- def process_evaluation(task_name: str, eval_request: EvalRequest) -> dict:
101
- # batch_size = 1
102
- batch_size = "auto"
103
-
104
- # might not have to get the benchmark.
105
- print(f"task_name parameter in process_evaluation() = {task_name}") #, task_names=[task.benchmark] = {[task.benchmark]}")
106
-
107
- num_fewshot = num_fewshots[task_name]
108
-
109
- results = run_evaluation(eval_request=eval_request, task_names=task_name, num_fewshot=num_fewshot,
110
- batch_size=batch_size, device=DEVICE, use_cache=None, limit=LIMIT)
111
-
112
- print('RESULTS', results)
113
-
114
- dumped = json.dumps(results, indent=2, default=lambda o: '<not serializable>')
115
- print(dumped)
116
-
117
- output_path = os.path.join(EVAL_RESULTS_PATH_BACKEND, *eval_request.model.split("/"), f"results_{task_name}_{datetime.now()}.json")
118
- os.makedirs(os.path.dirname(output_path), exist_ok=True)
119
- with open(output_path, "w") as f:
120
- f.write(dumped)
121
-
122
- my_snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
123
- API.upload_file(path_or_fileobj=output_path, path_in_repo=f"{eval_request.model}/results_{task_name}_{datetime.now()}.json",
124
- repo_id=RESULTS_REPO, repo_type="dataset")
125
- return results
126
-
127
-
128
- # the rendering is done with files in local repo.
129
- def process_pending_requests() -> bool:
130
- sanity_checks()
131
-
132
- current_pending_status = [PENDING_STATUS]
133
-
134
- # Get all eval request that are PENDING, if you want to run other evals, change this parameter
135
- # GETTING REQUESTS FROM THE HUB NOT LOCAL DIR.
136
- eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
137
- # Sort the evals by priority (first submitted first run)
138
- eval_requests = sort_models_by_priority(api=API, models=eval_requests)
139
-
140
- random.shuffle(eval_requests)
141
-
142
- # this says zero
143
- print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
144
-
145
- if len(eval_requests) == 0:
146
- return False
147
-
148
- eval_request = eval_requests[0]
149
- pp.pprint(eval_request)
150
-
151
- my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
152
- my_set_eval_request(api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
153
-
154
- # task_lst = TASKS_HARNESS.copy()
155
- task_lst = eval_request.get_user_requested_task_names()
156
- random.shuffle(task_lst)
157
- print(f"task_lst in process_pending_requests(): {task_lst}")
158
-
159
- for task_name in task_lst:
160
-
161
- results = process_evaluation(task_name, eval_request)
162
-
163
- my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
164
- my_set_eval_request(api=API, eval_request=eval_request, set_to_status=FINISHED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
165
-
166
- return True
167
-
168
-
169
- if __name__ == "__main__":
170
- # wait = True
171
-
172
- # import socket
173
- # if socket.gethostname() in {'hamburg'} or os.path.isdir("/home/pminervi"):
174
- # wait = False
175
-
176
- # if wait:
177
- # time.sleep(60 * random.randint(2, 5))
178
- # pass
179
-
180
- # res = False
181
- res = process_pending_requests()
182
-
183
- # if res is False:
184
- # res = process_finished_requests(100)
185
-
186
- # if res is False:
187
- # res = process_finished_requests(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
manage_repos.ipynb DELETED
@@ -1,226 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {},
6
- "source": [
7
- "https://huggingface.co/datasets/chaeeunlee/test_requests\n",
8
- "\n",
9
- "https://huggingface.co/datasets/chaeeunlee/test_results"
10
- ]
11
- },
12
- {
13
- "cell_type": "code",
14
- "execution_count": 1,
15
- "metadata": {},
16
- "outputs": [
17
- {
18
- "name": "stdout",
19
- "output_type": "stream",
20
- "text": [
21
- "CACHE_PATH = /Users/chaeeunlee/Documents/VSC_workspaces/huggingface_home_cache\n"
22
- ]
23
- },
24
- {
25
- "name": "stderr",
26
- "output_type": "stream",
27
- "text": [
28
- "/Users/chaeeunlee/anaconda3/envs/lb/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
29
- " from .autonotebook import tqdm as notebook_tqdm\n"
30
- ]
31
- },
32
- {
33
- "data": {
34
- "text/plain": [
35
- "'\\n( path_in_repo: str\\nrepo_id: str\\ntoken: typing.Optional[str] = None\\nrepo_type: typing.Optional[str] = Nonerevision: typing.Optional[str] = Nonecommit_message: typing.Optional[str] = Nonecommit_description: typing.Optional[str] = Nonecreate_pr: typing.Optional[bool] = Noneparent_commit: typing.Optional[str] = None )\\n'"
36
- ]
37
- },
38
- "execution_count": 1,
39
- "metadata": {},
40
- "output_type": "execute_result"
41
- }
42
- ],
43
- "source": [
44
- "from src.envs import H4_TOKEN, API, QUEUE_REPO, RESULTS_REPO, REPO_ID\n",
45
- "\n",
46
- "from huggingface_hub import HfApi\n",
47
- "\n",
48
- "'''\n",
49
- "( path_in_repo: str\n",
50
- "repo_id: str\n",
51
- "token: typing.Optional[str] = None\n",
52
- "repo_type: typing.Optional[str] = Nonerevision: typing.Optional[str] = Nonecommit_message: typing.Optional[str] = Nonecommit_description: typing.Optional[str] = Nonecreate_pr: typing.Optional[bool] = Noneparent_commit: typing.Optional[str] = None )\n",
53
- "'''\n",
54
- "\n"
55
- ]
56
- },
57
- {
58
- "cell_type": "code",
59
- "execution_count": 2,
60
- "metadata": {},
61
- "outputs": [],
62
- "source": [
63
- "res = API.delete_folder(path_in_repo='hub/', repo_id=REPO_ID, repo_type='space')"
64
- ]
65
- },
66
- {
67
- "cell_type": "code",
68
- "execution_count": 14,
69
- "metadata": {},
70
- "outputs": [
71
- {
72
- "ename": "EntryNotFoundError",
73
- "evalue": "404 Client Error. (Request ID: Root=1-65c43c73-7771219478c3ca215705378d;6308513c-7fb2-4810-afa4-9ea734f21820)\n\nEntry Not Found for url: https://huggingface.co/api/datasets/chaeeunlee/test_results/commit/main.",
74
- "output_type": "error",
75
- "traceback": [
76
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
77
- "\u001b[0;31mHTTPError\u001b[0m Traceback (most recent call last)",
78
- "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py:286\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[0;34m(response, endpoint_name)\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 286\u001b[0m \u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 287\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m HTTPError \u001b[38;5;28;01mas\u001b[39;00m e:\n",
79
- "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/requests/models.py:1021\u001b[0m, in \u001b[0;36mResponse.raise_for_status\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1020\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m http_error_msg:\n\u001b[0;32m-> 1021\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m HTTPError(http_error_msg, response\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m)\n",
80
- "\u001b[0;31mHTTPError\u001b[0m: 404 Client Error: Not Found for url: https://huggingface.co/api/datasets/chaeeunlee/test_results/commit/main",
81
- "\nThe above exception was the direct cause of the following exception:\n",
82
- "\u001b[0;31mEntryNotFoundError\u001b[0m Traceback (most recent call last)",
83
- "Cell \u001b[0;32mIn[14], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[43mAPI\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete_folder\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath_in_repo\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mEleutherAI/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mRESULTS_REPO\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrepo_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mdataset\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
84
- "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 116\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
85
- "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/hf_api.py:4767\u001b[0m, in \u001b[0;36mHfApi.delete_folder\u001b[0;34m(self, path_in_repo, repo_id, token, repo_type, revision, commit_message, commit_description, create_pr, parent_commit)\u001b[0m\n\u001b[1;32m 4716\u001b[0m \u001b[38;5;129m@validate_hf_hub_args\u001b[39m\n\u001b[1;32m 4717\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete_folder\u001b[39m(\n\u001b[1;32m 4718\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 4728\u001b[0m parent_commit: Optional[\u001b[38;5;28mstr\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 4729\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m CommitInfo:\n\u001b[1;32m 4730\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 4731\u001b[0m \u001b[38;5;124;03m Deletes a folder in the given repo.\u001b[39;00m\n\u001b[1;32m 4732\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 4765\u001b[0m \u001b[38;5;124;03m especially useful if the repo is updated / committed to concurrently.\u001b[39;00m\n\u001b[1;32m 4766\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 4767\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_commit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 4768\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4769\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4770\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4771\u001b[0m \u001b[43m \u001b[49m\u001b[43moperations\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mCommitOperationDelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath_in_repo\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath_in_repo\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mis_folder\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4772\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4773\u001b[0m \u001b[43m \u001b[49m\u001b[43mcommit_message\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 4774\u001b[0m \u001b[43m \u001b[49m\u001b[43mcommit_message\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mcommit_message\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mDelete folder \u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mpath_in_repo\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m with huggingface_hub\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 4775\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4776\u001b[0m \u001b[43m \u001b[49m\u001b[43mcommit_description\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_description\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4777\u001b[0m \u001b[43m \u001b[49m\u001b[43mcreate_pr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcreate_pr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4778\u001b[0m \u001b[43m \u001b[49m\u001b[43mparent_commit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparent_commit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4779\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
86
- "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 116\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
87
- "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/hf_api.py:1208\u001b[0m, in \u001b[0;36mfuture_compatible.<locals>._inner\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1205\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrun_as_future(fn, \u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 1207\u001b[0m \u001b[38;5;66;03m# Otherwise, call the function normally\u001b[39;00m\n\u001b[0;32m-> 1208\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
88
- "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/hf_api.py:3600\u001b[0m, in \u001b[0;36mHfApi.create_commit\u001b[0;34m(self, repo_id, operations, commit_message, commit_description, token, repo_type, revision, create_pr, num_threads, parent_commit, run_as_future)\u001b[0m\n\u001b[1;32m 3598\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 3599\u001b[0m commit_resp \u001b[38;5;241m=\u001b[39m get_session()\u001b[38;5;241m.\u001b[39mpost(url\u001b[38;5;241m=\u001b[39mcommit_url, headers\u001b[38;5;241m=\u001b[39mheaders, data\u001b[38;5;241m=\u001b[39mdata, params\u001b[38;5;241m=\u001b[39mparams)\n\u001b[0;32m-> 3600\u001b[0m \u001b[43mhf_raise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcommit_resp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mendpoint_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcommit\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3601\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m RepositoryNotFoundError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 3602\u001b[0m e\u001b[38;5;241m.\u001b[39mappend_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE)\n",
89
- "File \u001b[0;32m~/anaconda3/envs/lb/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py:296\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[0;34m(response, endpoint_name)\u001b[0m\n\u001b[1;32m 294\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m error_code \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEntryNotFound\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 295\u001b[0m message \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39mstatus_code\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m Client Error.\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEntry Not Found for url: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39murl\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m--> 296\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m EntryNotFoundError(message, response) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[1;32m 298\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m error_code \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mGatedRepo\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 299\u001b[0m message \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 300\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39mstatus_code\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m Client Error.\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot access gated repo for url \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39murl\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 301\u001b[0m )\n",
90
- "\u001b[0;31mEntryNotFoundError\u001b[0m: 404 Client Error. (Request ID: Root=1-65c43c73-7771219478c3ca215705378d;6308513c-7fb2-4810-afa4-9ea734f21820)\n\nEntry Not Found for url: https://huggingface.co/api/datasets/chaeeunlee/test_results/commit/main."
91
- ]
92
- }
93
- ],
94
- "source": [
95
- "res = API.delete_folder(path_in_repo='EleutherAI/', repo_id=RESULTS_REPO, repo_type='dataset')"
96
- ]
97
- },
98
- {
99
- "cell_type": "code",
100
- "execution_count": 15,
101
- "metadata": {},
102
- "outputs": [],
103
- "source": [
104
- "res = API.delete_folder(path_in_repo='EleutherAI/pythia-70m_biolama_umls_eval_request_False_float32_Original.json', repo_id=QUEUE_REPO, repo_type='dataset')\n",
105
- "# res = API.delete_folder(path_in_repo='mistralai/', repo_id=QUEUE_REPO, repo_type='dataset')\n",
106
- "\n",
107
- "# res = API.delete_file(path_in_repo=\"EleutherAI/pythia-70m_pubmedqa_eval_request_False_float32_Original.json\", repo_id=QUEUE_REPO, repo_type='dataset')\n"
108
- ]
109
- },
110
- {
111
- "cell_type": "code",
112
- "execution_count": null,
113
- "metadata": {},
114
- "outputs": [],
115
- "source": [
116
- "# import os\n",
117
- "\n",
118
- "# for root, _, files in os.walk(results_path):\n",
119
- "# # We should only have json files in model results\n",
120
- "# if len(files) == 0 or any([not f.endswith(\".json\") for f in files]):\n",
121
- "# continue\n",
122
- "\n",
123
- "# # Sort the files by date\n",
124
- "# try:\n",
125
- "# files.sort(key=lambda x: x.removesuffix(\".json\").removeprefix(\"results_\")[:-7])\n",
126
- "# except dateutil.parser._parser.ParserError:\n",
127
- "# files = [files[-1]]\n",
128
- "\n",
129
- "\n",
130
- "# print(f\"files = {files}\")\n",
131
- "\n",
132
- "# for file in files:\n",
133
- "# model_result_filepaths.append(os.path.join(root, file))"
134
- ]
135
- },
136
- {
137
- "cell_type": "code",
138
- "execution_count": null,
139
- "metadata": {},
140
- "outputs": [
141
- {
142
- "name": "stdout",
143
- "output_type": "stream",
144
- "text": [
145
- "DatasetInfo(id='chaeeunlee/test_requests', author='chaeeunlee', sha='c7f4d0c0b1207cc773dcd0b1df49cd6a883e02be', created_at=datetime.datetime(2024, 1, 31, 11, 19, 22, tzinfo=datetime.timezone.utc), last_modified=datetime.datetime(2024, 1, 31, 19, 55, 30, tzinfo=datetime.timezone.utc), private=False, gated=False, disabled=False, downloads=0, likes=0, paperswithcode_id=None, tags=['license:mit', 'region:us'], card_data={'annotations_creators': None, 'language_creators': None, 'language': None, 'license': 'mit', 'multilinguality': None, 'size_categories': None, 'source_datasets': None, 'task_categories': None, 'task_ids': None, 'paperswithcode_id': None, 'pretty_name': None, 'config_names': None, 'train_eval_index': None}, siblings=[RepoSibling(rfilename='.gitattributes', size=None, blob_id=None, lfs=None), RepoSibling(rfilename='EleutherAI/pythia-160m_eval_request_False_float32_Original.json', size=None, blob_id=None, lfs=None), RepoSibling(rfilename='README.md', size=None, blob_id=None, lfs=None)])\n"
146
- ]
147
- }
148
- ],
149
- "source": [
150
- "info = API.dataset_info(repo_id=QUEUE_REPO)\n",
151
- "print(info)"
152
- ]
153
- },
154
- {
155
- "cell_type": "code",
156
- "execution_count": 21,
157
- "metadata": {},
158
- "outputs": [],
159
- "source": [
160
- "from huggingface_hub import HfApi\n",
161
- "\n",
162
- "def print_repo_directory_structure(api, repo_id, is_dataset=True):\n",
163
- " \"\"\"\n",
164
- " Print the directory structure of a Hugging Face repository.\n",
165
- "\n",
166
- " Parameters:\n",
167
- " - repo_id (str): Repository ID in the format \"username/reponame\".\n",
168
- " \"\"\"\n",
169
- " # api = HfApi()\n",
170
- " if is_dataset:\n",
171
- " repo_files = api.list_repo_files(repo_id=repo_id, repo_type='dataset')\n",
172
- " else:\n",
173
- " repo_files = api.list_repo_files(repo_id=repo_id)\n",
174
- "\n",
175
- "\n",
176
- " print(f\"Directory structure of {repo_id}:\")\n",
177
- " print()\n",
178
- " for file_path in repo_files:\n",
179
- " print(file_path)\n",
180
- "\n"
181
- ]
182
- },
183
- {
184
- "cell_type": "code",
185
- "execution_count": 35,
186
- "metadata": {},
187
- "outputs": [
188
- {
189
- "name": "stdout",
190
- "output_type": "stream",
191
- "text": [
192
- "Directory structure of chaeeunlee/test_requests:\n",
193
- "\n",
194
- ".gitattributes\n",
195
- "README.md\n"
196
- ]
197
- }
198
- ],
199
- "source": [
200
- "repo_id = QUEUE_REPO # Replace with the target repository ID\n",
201
- "print_repo_directory_structure(API, repo_id)"
202
- ]
203
- }
204
- ],
205
- "metadata": {
206
- "kernelspec": {
207
- "display_name": "lb",
208
- "language": "python",
209
- "name": "python3"
210
- },
211
- "language_info": {
212
- "codemirror_mode": {
213
- "name": "ipython",
214
- "version": 3
215
- },
216
- "file_extension": ".py",
217
- "mimetype": "text/x-python",
218
- "name": "python",
219
- "nbconvert_exporter": "python",
220
- "pygments_lexer": "ipython3",
221
- "version": "3.10.13"
222
- }
223
- },
224
- "nbformat": 4,
225
- "nbformat_minor": 2
226
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pyproject.toml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.ruff]
2
+ # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
+ select = ["E", "F"]
4
+ ignore = ["E501"] # line too long (black is taking care of this)
5
+ line-length = 119
6
+ fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
+
8
+ [tool.isort]
9
+ profile = "black"
10
+ line_length = 119
11
+
12
+ [tool.black]
13
+ line-length = 119
requirements.txt CHANGED
@@ -1,31 +1,15 @@
1
- torch
2
- colorama
3
- APScheduler
4
- black
5
- click
6
- datasets
7
- gradio
8
- gradio_client
9
- huggingface-hub
10
- matplotlib
11
- numpy
12
- pandas
13
- plotly
14
- python-dateutil
15
- requests
16
- semantic-version
17
- tqdm
18
- transformers>=4.36.0,<4.37.0
19
- tokenizers>=0.15.0
20
- lm_eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git
21
- accelerate
22
- sentencepiece
23
- langdetect
24
- sacrebleu
25
- cchardet
26
- rouge_score
27
- bert-score
28
- evaluate
29
- spacy
30
- selfcheckgpt
31
- immutabledict
 
1
+ APScheduler==3.10.1
2
+ black==23.11.0
3
+ click==8.1.3
4
+ datasets==2.14.5
5
+ gradio==4.4.0
6
+ gradio_client==0.7.0
7
+ huggingface-hub>=0.18.0
8
+ matplotlib==3.7.1
9
+ numpy==1.24.2
10
+ pandas==2.0.0
11
+ python-dateutil==2.8.2
12
+ requests==2.28.2
13
+ tqdm==4.65.0
14
+ transformers==4.35.2
15
+ tokenizers>=0.15.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/create_request_file.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pprint
4
+ import re
5
+ from datetime import datetime, timezone
6
+
7
+ import click
8
+ from colorama import Fore
9
+ from huggingface_hub import HfApi, snapshot_download
10
+
11
+ EVAL_REQUESTS_PATH = "eval-queue"
12
+ QUEUE_REPO = "open-llm-leaderboard/requests"
13
+
14
+ precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
15
+ model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned")
16
+ weight_types = ("Original", "Delta", "Adapter")
17
+
18
+
19
+ def get_model_size(model_info, precision: str):
20
+ size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
21
+ try:
22
+ model_size = round(model_info.safetensors["total"] / 1e9, 3)
23
+ except (AttributeError, TypeError):
24
+ try:
25
+ size_match = re.search(size_pattern, model_info.modelId.lower())
26
+ model_size = size_match.group(0)
27
+ model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
28
+ except AttributeError:
29
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
30
+
31
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
32
+ model_size = size_factor * model_size
33
+ return model_size
34
+
35
+
36
+ def main():
37
+ api = HfApi()
38
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
39
+ snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset")
40
+
41
+ model_name = click.prompt("Enter model name")
42
+ revision = click.prompt("Enter revision", default="main")
43
+ precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
44
+ model_type = click.prompt("Enter model type", type=click.Choice(model_types))
45
+ weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
46
+ base_model = click.prompt("Enter base model", default="")
47
+ status = click.prompt("Enter status", default="FINISHED")
48
+
49
+ try:
50
+ model_info = api.model_info(repo_id=model_name, revision=revision)
51
+ except Exception as e:
52
+ print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
53
+ return 1
54
+
55
+ model_size = get_model_size(model_info=model_info, precision=precision)
56
+
57
+ try:
58
+ license = model_info.cardData["license"]
59
+ except Exception:
60
+ license = "?"
61
+
62
+ eval_entry = {
63
+ "model": model_name,
64
+ "base_model": base_model,
65
+ "revision": revision,
66
+ "private": False,
67
+ "precision": precision,
68
+ "weight_type": weight_type,
69
+ "status": status,
70
+ "submitted_time": current_time,
71
+ "model_type": model_type,
72
+ "likes": model_info.likes,
73
+ "params": model_size,
74
+ "license": license,
75
+ }
76
+
77
+ user_name = ""
78
+ model_path = model_name
79
+ if "/" in model_name:
80
+ user_name = model_name.split("/")[0]
81
+ model_path = model_name.split("/")[1]
82
+
83
+ pprint.pprint(eval_entry)
84
+
85
+ if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
86
+ click.echo("continuing...")
87
+
88
+ out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
89
+ os.makedirs(out_dir, exist_ok=True)
90
+ out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
91
+
92
+ with open(out_path, "w") as f:
93
+ f.write(json.dumps(eval_entry))
94
+
95
+ api.upload_file(
96
+ path_or_fileobj=out_path,
97
+ path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
98
+ repo_id=QUEUE_REPO,
99
+ repo_type="dataset",
100
+ commit_message=f"Add {model_name} to eval queue",
101
+ )
102
+ else:
103
+ click.echo("aborting...")
104
+
105
+
106
+ if __name__ == "__main__":
107
+ main()
src/.DS_Store DELETED
Binary file (6.15 kB)
 
src/backend/.DS_Store DELETED
Binary file (6.15 kB)
 
src/backend/envs.py DELETED
@@ -1,54 +0,0 @@
1
- import os
2
-
3
- import torch
4
-
5
- from dataclasses import dataclass
6
- from enum import Enum
7
-
8
- from src.envs import CACHE_PATH
9
-
10
-
11
- @dataclass
12
- class Task:
13
- benchmark: str
14
- # metric: str # yeah i don't think we need this.
15
- col_name: str
16
- num_fewshot: int
17
-
18
-
19
- class Tasks(Enum):
20
-
21
- task0 = Task("medmcqa", "MedMCQA", 0)
22
- task1 = Task("medqa_4options", "MedQA", 0)
23
-
24
- task2 = Task("anatomy (mmlu)", "MMLU Anatomy", 0)
25
- task3 = Task("clinical_knowledge (mmlu)", "MMLU Clinical Knowledge", 0)
26
- task4 = Task("college_biology (mmlu)", "MMLU College Biology", 0)
27
- task5 = Task("college_medicine (mmlu)", "MMLU College Medicine", 0)
28
- task6 = Task("medical_genetics (mmlu)", "MMLU Medical Genetics", 0)
29
- task7 = Task("professional_medicine (mmlu)", "MMLU Professional Medicine", 0)
30
- task8 = Task("pubmedqa", "PubMedQA", 0)
31
-
32
-
33
-
34
- num_fewshots = {
35
- "medmcqa": 0,
36
- "medqa_4options": 0,
37
- "anatomy (mmlu)":0,
38
- "clinical_knowledge (mmlu)": 0,
39
- "college_biology (mmlu)":0,
40
- "college_medicine (mmlu)":0,
41
- "medical_genetics (mmlu)":0,
42
- "professional_medicine (mmlu)":0,
43
- "pubmedqa":0,
44
- }
45
-
46
-
47
- # NUM_FEWSHOT = 64 # Change with your few shot
48
-
49
- EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
50
- EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
51
-
52
- DEVICE = "cuda" if torch.cuda.is_available() else 'mps'
53
-
54
- LIMIT = None # Testing; needs to be None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/backend/manage_requests.py DELETED
@@ -1,140 +0,0 @@
1
- import glob
2
- import json
3
- from dataclasses import dataclass
4
- from typing import Optional, List
5
-
6
- from huggingface_hub import HfApi, snapshot_download
7
-
8
- from src.utils import my_snapshot_download
9
-
10
- from lm_eval import tasks, evaluator, utils
11
-
12
- from src.display.utils import Task
13
-
14
-
15
- @dataclass
16
- class EvalRequest:
17
- model: str
18
-
19
- ## added
20
- requested_tasks: List[Task] # dict?
21
-
22
-
23
- private: bool
24
- status: str
25
- json_filepath: str
26
- weight_type: str = "Original"
27
- model_type: str = "" # pretrained, finetuned, with RL
28
- precision: str = "" # float16, bfloat16
29
- base_model: Optional[str] = None # for adapter models
30
- revision: str = "main" # commit
31
- submitted_time: Optional[str] = "2022-05-18T11:40:22.519222" # random date just so that we can still order requests by date
32
- model_type: Optional[str] = None
33
- likes: Optional[int] = 0
34
- params: Optional[int] = None
35
- license: Optional[str] = ""
36
-
37
- ## added by chaeeun
38
- def get_user_requested_task_names(self) -> List[str]:
39
- user_requested_tasks = self.requested_tasks
40
- # print(f" {user_requested_tasks}")
41
-
42
- task_names = [task['benchmark'] for task in user_requested_tasks]
43
-
44
- return task_names
45
-
46
-
47
- def get_model_args(self) -> str:
48
-
49
- ## added
50
- if "gpt" in self.model:
51
- model_args = f"model={self.model},revision={self.revision},parallelize=True"
52
- else:
53
- model_args = f"pretrained={self.model},revision={self.revision},parallelize=True"
54
-
55
- if self.precision in ["float16", "float32", "bfloat16"]:
56
- model_args += f",dtype={self.precision}"
57
- # Quantized models need some added config, the install of bits and bytes, etc
58
- #elif self.precision == "8bit":
59
- # model_args += ",load_in_8bit=True"
60
- #elif self.precision == "4bit":
61
- # model_args += ",load_in_4bit=True"
62
- #elif self.precision == "GPTQ":
63
- # A GPTQ model does not need dtype to be specified,
64
- # it will be inferred from the config
65
- pass
66
- else:
67
- raise Exception(f"Unknown precision {self.precision}.")
68
-
69
- return model_args
70
-
71
- # set as in on remote repo!
72
- def set_eval_request(api: HfApi, eval_request: EvalRequest, set_to_status: str, hf_repo: str, local_dir: str):
73
- """Updates a given eval request with its new status on the hub (running, completed, failed, ...)"""
74
- json_filepath = eval_request.json_filepath
75
-
76
- with open(json_filepath) as fp:
77
- data = json.load(fp)
78
-
79
- data["status"] = set_to_status
80
-
81
- with open(json_filepath, "w") as f:
82
- f.write(json.dumps(data))
83
-
84
- api.upload_file(path_or_fileobj=json_filepath, path_in_repo=json_filepath.replace(local_dir, ""),
85
- repo_id=hf_repo, repo_type="dataset")
86
-
87
- # getting status from the remote repo as well.
88
- def get_eval_requests(job_status: list, local_dir: str, hf_repo: str) -> list[EvalRequest]:
89
- """Get all pending evaluation requests and return a list in which private
90
- models appearing first, followed by public models sorted by the number of
91
- likes.
92
-
93
- Returns:
94
- `list[EvalRequest]`: a list of model info dicts.
95
- """
96
- my_snapshot_download(repo_id=hf_repo, revision="main", local_dir=local_dir, repo_type="dataset", max_workers=60)
97
- json_files = glob.glob(f"{local_dir}/**/*.json", recursive=True)
98
-
99
- eval_requests = []
100
- for json_filepath in json_files:
101
- with open(json_filepath) as fp:
102
- data = json.load(fp)
103
- if data["status"] in job_status:
104
- # import pdb
105
- # breakpoint()
106
- data["json_filepath"] = json_filepath
107
-
108
- if 'job_id' in data:
109
- del data['job_id']
110
-
111
- print(f"data in get_eval_requests(): {data}")
112
-
113
- eval_request = EvalRequest(**data)
114
- eval_requests.append(eval_request)
115
-
116
- print(f"eval_requests right before returning: {eval_requests}")
117
- return eval_requests
118
-
119
- # not entirely sure what this one does.
120
- def check_completed_evals(api: HfApi, hf_repo: str, local_dir: str, checked_status: str, completed_status: str,
121
- failed_status: str, hf_repo_results: str, local_dir_results: str):
122
- """Checks if the currently running evals are completed, if yes, update their status on the hub."""
123
- my_snapshot_download(repo_id=hf_repo_results, revision="main", local_dir=local_dir_results, repo_type="dataset", max_workers=60)
124
-
125
- running_evals = get_eval_requests([checked_status], hf_repo=hf_repo, local_dir=local_dir)
126
-
127
- for eval_request in running_evals:
128
- model = eval_request.model
129
- print("====================================")
130
- print(f"Checking {model}")
131
-
132
- output_path = model
133
- output_file = f"{local_dir_results}/{output_path}/results*.json"
134
- output_file_exists = len(glob.glob(output_file)) > 0
135
-
136
- if output_file_exists:
137
- print(f"EXISTS output file exists for {model} setting it to {completed_status}")
138
- set_eval_request(api, eval_request, completed_status, hf_repo, local_dir)
139
-
140
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/backend/run_eval_suite.py DELETED
@@ -1,75 +0,0 @@
1
- from lm_eval import tasks, evaluator, utils
2
- from lm_eval.tasks import initialize_tasks, TaskManager
3
-
4
- try:
5
- from lm_eval.tasks import include_task_folder
6
- except:
7
- from lm_eval.tasks import include_path
8
-
9
- from src.backend.manage_requests import EvalRequest
10
-
11
- # from src.backend.tasks.xsum.task import XSum
12
- # from src.backend.tasks.xsum.task_v2 import XSumv2
13
-
14
- # from src.backend.tasks.cnndm.task import CNNDM
15
- # from src.backend.tasks.cnndm.task_v2 import CNNDMv2
16
-
17
- # from src.backend.tasks.selfcheckgpt.task import SelfCheckGpt
18
-
19
-
20
-
21
- def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, use_cache=None, limit=None, max_nb_samples=100) -> dict:
22
- if limit:
23
- print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
24
-
25
-
26
- # try:
27
- # include_task_folder("src/backend/tasks/")
28
- # except:
29
- # include_path("src/backend/tasks")
30
-
31
- # initialize_tasks('INFO')
32
- # https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/interface.md#external-library-usage
33
- # indexes all tasks from the `lm_eval/tasks` subdirectory.
34
- # Alternatively, you can set `TaskManager(include_path="path/to/my/custom/task/configs")`
35
- # to include a set of tasks in a separate directory.
36
- task_manager = TaskManager(include_path="src/backend/probing_tasks")
37
-
38
- if "gpt" in eval_request.model:
39
- model = "openai-chat-completions"
40
- else:
41
- model = "hf-auto"
42
-
43
- print(f"Considered Tasks (after overriding): {task_names}")
44
-
45
- print(f"model_args: {eval_request.get_model_args()}")
46
-
47
- results = evaluator.simple_evaluate(model=model, # "hf-causal-experimental", # "hf-causal" how can i make this work for
48
- model_args=eval_request.get_model_args(),
49
- task_manager=task_manager,
50
- tasks=task_names,
51
- num_fewshot=num_fewshot,
52
- batch_size=batch_size,
53
- max_batch_size=8,
54
- device=device,
55
- use_cache=use_cache,
56
- limit=limit,
57
-
58
- # task_manager=task_manager,
59
- # include_path="/Users/chaeeunlee/Documents/VSC_workspaces/biomed_probing_leaderboard/src/backend/tasks",
60
- write_out=True)
61
-
62
- results["config"]["model_dtype"] = eval_request.precision
63
- results["config"]["model_name"] = eval_request.model
64
- results["config"]["model_sha"] = eval_request.revision
65
-
66
- if max_nb_samples is not None:
67
- if 'samples' in results:
68
- samples = results['samples']
69
- for task_name in samples.keys():
70
- if len(samples[task_name]) > max_nb_samples:
71
- results['samples'][task_name] = results['samples'][task_name][:max_nb_samples]
72
-
73
- # print(evaluator.make_table(results))
74
-
75
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/backend/sort_queue.py DELETED
@@ -1,28 +0,0 @@
1
- from dataclasses import dataclass
2
- from huggingface_hub import HfApi
3
- from src.backend.manage_requests import EvalRequest
4
-
5
-
6
- @dataclass
7
- class ModelMetadata:
8
- likes: int = 0
9
- size: int = 15
10
-
11
-
12
- def sort_models_by_priority(api: HfApi, models: list[EvalRequest]) -> list[EvalRequest]:
13
- private_models = [model for model in models if model.private]
14
- public_models = [model for model in models if not model.private]
15
-
16
- return sort_by_submit_date(private_models) + sort_by_submit_date(public_models)
17
-
18
-
19
- def sort_by_submit_date(eval_requests: list[EvalRequest]) -> list[EvalRequest]:
20
- return sorted(eval_requests, key=lambda x: x.submitted_time, reverse=False)
21
-
22
-
23
- def sort_by_size(eval_requests: list[EvalRequest]) -> list[EvalRequest]:
24
- return sorted(eval_requests, key=lambda x: x.params, reverse=False)
25
-
26
-
27
- def sort_by_likes(eval_requests: list[EvalRequest]) -> list[EvalRequest]:
28
- return sorted(eval_requests, key=lambda x: x.likes, reverse=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/about.py CHANGED
@@ -1,13 +1,46 @@
1
- from src.display.utils import ModelType
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- # <div style="text-align: center;">
4
- # <img src="https://raw.githubusercontent.com/monk1337/MultiMedQA/main/assets/logs.png" alt="Descriptive Alt Text" style="display: block; margin: auto; height: 160px;">
5
- # </div>
6
 
7
- TITLE = """
8
- <h1 align="center" style="color: #1a237e;"> Open Medical-LLM Leaderboard</h1>
9
  """
10
 
 
11
  INTRODUCTION_TEXT = """
12
  🩺 The Open Medical LLM Leaderboard aims to track, rank and evaluate the performance of large language models (LLMs) on medical question answering tasks. It evaluates LLMs across a diverse array of medical datasets, including MedQA (USMLE), PubMedQA, MedMCQA, and subsets of MMLU related to medicine and biology. The leaderboard offers a comprehensive assessment of each model's medical knowledge and question answering capabilities.
13
 
@@ -20,11 +53,25 @@ The backend of the Open Medical LLM Leaderboard uses the Eleuther AI Language Mo
20
 
21
  LLM_BENCHMARKS_TEXT = f"""
22
 
23
- Context
 
24
  Evaluating the medical knowledge and clinical reasoning capabilities of LLMs is crucial as they are increasingly being applied to healthcare and biomedical applications. The Open Medical LLM Leaderboard provides a platform to assess the latest LLMs on their performance on a variety of medical question answering tasks. This can help identify the strengths and gaps in medical understanding of current models.
25
 
26
- How it works
 
27
  📈 We evaluate the models on 9 medical Q&A datasets using the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test language models on different tasks.
 
 
 
 
 
 
 
 
 
 
 
 
28
  """
29
 
30
  LLM_BENCHMARKS_DETAILS = f"""
@@ -55,9 +102,11 @@ python main.py --model=hf-auto --model_args="pretrained=<model>,revision=<revisi
55
  Note some datasets may require additional setup, refer to the Evaluation Harness documentation. Adjust batch size based on your GPU memory if not using parallelism. Minor variations in results are expected with different batch sizes due to padding.
56
 
57
  Icons
58
- {ModelType.PT.to_str(" : ")} Pre-trained model
59
- {ModelType.FT.to_str(" : ")} Fine-tuned model
60
- {ModelType.Unknown.to_str(" : ")} Unknown model type
 
 
61
  Missing icons indicate the model info is not yet added, feel free to open an issue to include it!
62
  """
63
 
@@ -113,4 +162,15 @@ year = {2024},
113
  publisher = {Hugging Face},
114
  howpublished = "\url{https://huggingface.co/spaces/openlifescienceai/open_medical_llm_leaderboard}"
115
  }
116
- """
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from enum import Enum
3
+ # from src.display.utils import ModelType
4
+
5
+
6
+ @dataclass
7
+ class Task:
8
+ benchmark: str
9
+ metric: str
10
+ col_name: str
11
+
12
+
13
+ # Init: to update with your specific keys
14
+ class Tasks(Enum):
15
+ # task_key in the json file, metric_key in the json file, name to display in the leaderboard
16
+ task0 = Task("medmcqa", "acc,none", "MedMCQA")
17
+ task1 = Task("medqa_4options", "acc,none", "MedQA")
18
+ task2 = Task("mmlu_anatomy", "acc,none", "MMLU Anatomy")
19
+ task3 = Task("mmlu_clinical_knowledge", "acc,none", "MMLU Clinical Knowledge")
20
+ task4 = Task("mmlu_college_biology", "acc,none", "MMLU College Biology")
21
+ task5 = Task("mmlu_college_medicine", "acc,none", "MMLU College Medicine")
22
+ task6 = Task("mmlu_medical_genetics", "acc,none", "MMLU Medical Genetics")
23
+ task7 = Task("mmlu_professional_medicine", "acc,none", "MMLU Professional Medicine")
24
+ task8 = Task("pubmedqa", "acc,none", "PubMedQA")
25
+
26
+
27
+ # "medmcqa", "acc,none", "MedMCQA"
28
+
29
+ # Your leaderboard name
30
+ # <h1 align="center" style="color: #1a237e;"> Open Medical-LLM Leaderboard</h1>
31
+ TITLE = """
32
+
33
+
34
+ <div style="text-align: center; margin-bottom: 20px;">
35
+ <img src="https://raw.githubusercontent.com/monk1337/MultiMedQA/main/assets/logs.png" alt="Descriptive Alt Text" style="display: block; margin: auto; height: 160px;">
36
+ </div>
37
+
38
+ <h1 align="center" style="color: #1a237e; font-size: 40px;">Open <span style="color: #990001;">Medical-LLM</span> Leaderboard</h1>
39
 
 
 
 
40
 
 
 
41
  """
42
 
43
+ # What does your leaderboard evaluate?
44
  INTRODUCTION_TEXT = """
45
  🩺 The Open Medical LLM Leaderboard aims to track, rank and evaluate the performance of large language models (LLMs) on medical question answering tasks. It evaluates LLMs across a diverse array of medical datasets, including MedQA (USMLE), PubMedQA, MedMCQA, and subsets of MMLU related to medicine and biology. The leaderboard offers a comprehensive assessment of each model's medical knowledge and question answering capabilities.
46
 
 
53
 
54
  LLM_BENCHMARKS_TEXT = f"""
55
 
56
+ <h2 style="color: #2c3e50;"> Why Leaderboard? </h2>
57
+
58
  Evaluating the medical knowledge and clinical reasoning capabilities of LLMs is crucial as they are increasingly being applied to healthcare and biomedical applications. The Open Medical LLM Leaderboard provides a platform to assess the latest LLMs on their performance on a variety of medical question answering tasks. This can help identify the strengths and gaps in medical understanding of current models.
59
 
60
+ <h2 style="color: #2c3e50;">How it works</h2>
61
+
62
  📈 We evaluate the models on 9 medical Q&A datasets using the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test language models on different tasks.
63
+
64
+ <h2 style="color: #2c3e50;">About Open Life Science AI</h2>
65
+ An Open Life Science Project to Benchmark and Track AI Progress, Share Models and Datasets in the Life Science Field.
66
+ <a href="https://openlifescience.ai/" target="_blank"> More info </a>
67
+
68
+
69
+ <h2 style="color: #2c3e50;">Datasets</h2>
70
+
71
+ <div style="font-family: Arial, sans-serif; line-height: 1.6; color: #333;"> <ul style="list-style-type: none; padding: 0;"> <li style="margin-bottom: 20px;"> <h3 style="color: #2c3e50; margin-bottom: 5px;"><a href="https://arxiv.org/abs/2009.13081" target="_blank" style="color: #3498db;">MedQA (USMLE)</a></h3> <p>1273 real-world questions from the US Medical License Exams (USMLE) to test general medical knowledge</p> </li> <li style="margin-bottom: 20px;"> <h3 style="color: #2c3e50; margin-bottom: 5px;"><a href="https://arxiv.org/abs/1909.06146" target="_blank" style="color: #3498db;">PubMedQA</a></h3> <p>500 questions constructed from PubMed article titles along with the abstracts as context to test understanding of biomedical research</p> </li> <li style="margin-bottom: 20px;"> <h3 style="color: #2c3e50; margin-bottom: 5px;"><a href="https://proceedings.mlr.press/v174/pal22a.html" target="_blank" style="color: #3498db;">MedMCQA</a></h3> <p>4183 questions from Indian medical entrance exams (AIIMS & NEET PG) spanning 2.4k healthcare topics</p> </li> <li style="margin-bottom: 20px;"> <h3 style="color: #2c3e50; margin-bottom: 5px;"><a href="https://arxiv.org/abs/2009.03300" target="_blank" style="color: #3498db;">MMLU-Clinical knowledge</a></h3> <p>265 multiple choice questions on clinical knowledge</p> </li> <li style="margin-bottom: 20px;"> <h3 style="color: #2c3e50; margin-bottom: 5px;"><a href="https://arxiv.org/abs/2009.03300" target="_blank" style="color: #3498db;">MMLU-Medical genetics</a></h3> <p>100 MCQs on medical genetics</p> </li> <li style="margin-bottom: 20px;"> <h3 style="color: #2c3e50; margin-bottom: 5px;"><a href="https://arxiv.org/abs/2009.03300" target="_blank" style="color: #3498db;">MMLU-Anatomy</a></h3> <p>135 anatomy MCQs</p> </li> <li style="margin-bottom: 20px;"> <h3 style="color: #2c3e50; margin-bottom: 5px;"><a href="https://arxiv.org/abs/2009.03300" target="_blank" style="color: #3498db;">MMLU-Professional medicine</a></h3> <p>272 MCQs on professional medicine</p> </li> <li style="margin-bottom: 20px;"> <h3 style="color: #2c3e50; margin-bottom: 5px;"><a href="https://arxiv.org/abs/2009.03300" target="_blank" style="color: #3498db;">MMLU-College biology</a></h3> <p>144 MCQs on college-level biology</p> </li> <li> <h3 style="color: #2c3e50; margin-bottom: 5px;"><a href="https://arxiv.org/abs/2009.03300" target="_blank" style="color: #3498db;">MMLU-College medicine</a></h3> <p>173 college medicine MCQs</p> </li> </ul> </div>
72
+
73
+ <div style="font-family: Arial, sans-serif; line-height: 1.6; color: #333;"> <h2 style="color: #2c3e50;">Evaluation Metric</h2> <p>Metric Accuracy (ACC) is used as the main evaluation metric across all datasets.</p> <h2 style="color: #2c3e50;">Details and Logs</h2> <p>Detailed results are available in the results directory:</p> <a href="https://huggingface.co/datasets/openlifescienceai/results" target="_blank" style="color: #3498db;">https://huggingface.co/datasets/openlifescienceai/results</a> <p>Input/outputs for each model can be found in the details page accessible by clicking the 📄 emoji next to the model name.</p> <h2 style="color: #2c3e50;">Reproducibility</h2> <p>To reproduce the results, you can run this evaluation script:</p> <pre style="background-color: #f0f0f0; padding: 10px; border-radius: 5px;">python eval_medical_llm.py</pre> <p>To evaluate a specific dataset on a model, use the EleutherAI LLM Evaluation Harness:</p> <pre style="background-color: #f0f0f0; padding: 10px; border-radius: 5px;">python main.py --model=hf-auto --model_args="pretrained=&lt;model&gt;,revision=&lt;revision&gt;,parallelize=True" --tasks=&lt;dataset&gt; --num_fewshot=&lt;n_shots&gt; --batch_size=1 --output_path=&lt;output_dir&gt;</pre> <p>Note some datasets may require additional setup, refer to the Evaluation Harness documentation.</p> <p>Adjust batch size based on your GPU memory if not using parallelism. Minor variations in results are expected with different batch sizes due to padding.</p> <h2 style="color: #2c3e50;">Icons</h2> <ul style="list-style-type: none; padding: 0;"> <li>🟢 Pre-trained model</li> <li>🔶 Fine-tuned model</li> <li>? Unknown model type</li> <li>⭕ Instruction-tuned</li> <li>🟦 RL-tuned</li> </ul> <p>Missing icons indicate the model info is not yet added, feel free to open an issue to include it!</p> </div>
74
+
75
  """
76
 
77
  LLM_BENCHMARKS_DETAILS = f"""
 
102
  Note some datasets may require additional setup, refer to the Evaluation Harness documentation. Adjust batch size based on your GPU memory if not using parallelism. Minor variations in results are expected with different batch sizes due to padding.
103
 
104
  Icons
105
+ 🟢 Pre-trained model
106
+ 🔶 Fine-tuned model
107
+ ? Unknown model type
108
+ ⭕ instruction-tuned
109
+ 🟦 RL-tuned
110
  Missing icons indicate the model info is not yet added, feel free to open an issue to include it!
111
  """
112
 
 
162
  publisher = {Hugging Face},
163
  howpublished = "\url{https://huggingface.co/spaces/openlifescienceai/open_medical_llm_leaderboard}"
164
  }
165
+
166
+
167
+
168
+ @misc{singhal2023expertlevel,
169
+ title={Towards Expert-Level Medical Question Answering with Large Language Models},
170
+ author={Karan Singhal et al.},
171
+ year={2023},
172
+ eprint={2305.09617},
173
+ archivePrefix={arXiv},
174
+ primaryClass={cs.CL}
175
+ }
176
+ """
src/display/css_html_js.py CHANGED
@@ -1,9 +1,5 @@
1
  custom_css = """
2
 
3
- .gradio-container {
4
- max-width: 100%!important;
5
- }
6
-
7
  .markdown-text {
8
  font-size: 16px !important;
9
  }
 
1
  custom_css = """
2
 
 
 
 
 
3
  .markdown-text {
4
  font-size: 16px !important;
5
  }
src/display/formatting.py CHANGED
@@ -7,18 +7,12 @@ from huggingface_hub.hf_api import ModelInfo
7
 
8
  API = HfApi()
9
 
10
-
11
  def model_hyperlink(link, model_name):
12
  return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
13
 
14
 
15
  def make_clickable_model(model_name):
16
  link = f"https://huggingface.co/{model_name}"
17
-
18
- # details_model_name = model_name.replace("/", "__")
19
- # details_link = f"https://huggingface.co/datasets/open-llm-leaderboard/details_{details_model_name}"
20
-
21
- # return model_hyperlink(link, model_name) + " " + model_hyperlink(details_link, "📑")
22
  return model_hyperlink(link, model_name)
23
 
24
 
 
7
 
8
  API = HfApi()
9
 
 
10
  def model_hyperlink(link, model_name):
11
  return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
12
 
13
 
14
  def make_clickable_model(model_name):
15
  link = f"https://huggingface.co/{model_name}"
 
 
 
 
 
16
  return model_hyperlink(link, model_name)
17
 
18
 
src/display/utils.py CHANGED
@@ -3,30 +3,12 @@ from enum import Enum
3
 
4
  import pandas as pd
5
 
 
6
 
7
  def fields(raw_class):
8
  return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
9
 
10
 
11
- @dataclass
12
- class Task:
13
- benchmark: str
14
- metric: str
15
- col_name: str
16
-
17
-
18
- class Tasks(Enum):
19
- medmcqa = Task("medmcqa", "acc", "MedMCQA")
20
- medqa = Task("medqa_4options", "acc", "MedQA")
21
-
22
- mmlu_anatomy = Task("anatomy (mmlu)", "acc", "MMLU Anatomy")
23
- mmlu_ck = Task("clinical_knowledge (mmlu)", "acc", "MMLU Clinical Knowledge")
24
- mmlu_cb = Task("college_biology (mmlu)", "acc", "MMLU College Biology")
25
- mmlu_cm = Task("college_medicine (mmlu)", "acc", "MMLU College Medicine")
26
- mmlu_mg = Task("medical_genetics (mmlu)", "acc", "MMLU Medical Genetics")
27
- mmlu_pm = Task("professional_medicine (mmlu)", "acc", "MMLU Professional Medicine")
28
- pubmedqa = Task("pubmedqa", "acc", "PubMedQA")
29
-
30
  # These classes are for user facing column names,
31
  # to avoid having to change them all around the code
32
  # when a modif is needed
@@ -38,16 +20,16 @@ class ColumnContent:
38
  hidden: bool = False
39
  never_hidden: bool = False
40
  dummy: bool = False
41
- is_task: bool = False
42
 
 
43
  auto_eval_column_dict = []
44
  # Init
45
  auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
46
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
47
  #Scores
48
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg", "number", True)])
49
  for task in Tasks:
50
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, is_task=True)]) # hidden was true by default
51
  # Model information
52
  auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
53
  auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
@@ -64,7 +46,7 @@ auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_
64
  # We use make dataclass to dynamically fill the scores from Tasks
65
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
66
 
67
-
68
  @dataclass(frozen=True)
69
  class EvalQueueColumn: # Queue column
70
  model = ColumnContent("model", "markdown", True)
@@ -74,11 +56,12 @@ class EvalQueueColumn: # Queue column
74
  weight_type = ColumnContent("weight_type", "str", "Original")
75
  status = ColumnContent("status", "str", True)
76
 
77
-
78
  @dataclass
79
  class ModelDetails:
80
  name: str
81
- symbol: str = "" # emoji, only for the model type
 
82
 
83
 
84
  class ModelType(Enum):
@@ -103,18 +86,12 @@ class ModelType(Enum):
103
  return ModelType.IFT
104
  return ModelType.Unknown
105
 
106
-
107
  class WeightType(Enum):
108
  Adapter = ModelDetails("Adapter")
109
  Original = ModelDetails("Original")
110
  Delta = ModelDetails("Delta")
111
 
112
-
113
-
114
-
115
-
116
  class Precision(Enum):
117
- float32 = ModelDetails("float32")
118
  float16 = ModelDetails("float16")
119
  bfloat16 = ModelDetails("bfloat16")
120
  qt_8bit = ModelDetails("8bit")
@@ -122,10 +99,7 @@ class Precision(Enum):
122
  qt_GPTQ = ModelDetails("GPTQ")
123
  Unknown = ModelDetails("?")
124
 
125
- @staticmethod
126
- def from_str(precision: str):
127
- if precision in ["torch.float32", "float32"]:
128
- return Precision.float32
129
  if precision in ["torch.float16", "float16"]:
130
  return Precision.float16
131
  if precision in ["torch.bfloat16", "bfloat16"]:
@@ -137,7 +111,6 @@ class Precision(Enum):
137
  if precision in ["GPTQ", "None"]:
138
  return Precision.qt_GPTQ
139
  return Precision.Unknown
140
-
141
 
142
  # Column selection
143
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
 
3
 
4
  import pandas as pd
5
 
6
+ from src.display.about import Tasks
7
 
8
  def fields(raw_class):
9
  return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
 
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  # These classes are for user facing column names,
13
  # to avoid having to change them all around the code
14
  # when a modif is needed
 
20
  hidden: bool = False
21
  never_hidden: bool = False
22
  dummy: bool = False
 
23
 
24
+ ## Leaderboard columns
25
  auto_eval_column_dict = []
26
  # Init
27
  auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
28
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
29
  #Scores
30
+ auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
31
  for task in Tasks:
32
+ auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
33
  # Model information
34
  auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
35
  auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
 
46
  # We use make dataclass to dynamically fill the scores from Tasks
47
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
48
 
49
+ ## For the queue columns in the submission tab
50
  @dataclass(frozen=True)
51
  class EvalQueueColumn: # Queue column
52
  model = ColumnContent("model", "markdown", True)
 
56
  weight_type = ColumnContent("weight_type", "str", "Original")
57
  status = ColumnContent("status", "str", True)
58
 
59
+ ## All the model information that we might need
60
  @dataclass
61
  class ModelDetails:
62
  name: str
63
+ display_name: str = ""
64
+ symbol: str = "" # emoji
65
 
66
 
67
  class ModelType(Enum):
 
86
  return ModelType.IFT
87
  return ModelType.Unknown
88
 
 
89
  class WeightType(Enum):
90
  Adapter = ModelDetails("Adapter")
91
  Original = ModelDetails("Original")
92
  Delta = ModelDetails("Delta")
93
 
 
 
 
 
94
  class Precision(Enum):
 
95
  float16 = ModelDetails("float16")
96
  bfloat16 = ModelDetails("bfloat16")
97
  qt_8bit = ModelDetails("8bit")
 
99
  qt_GPTQ = ModelDetails("GPTQ")
100
  Unknown = ModelDetails("?")
101
 
102
+ def from_str(precision):
 
 
 
103
  if precision in ["torch.float16", "float16"]:
104
  return Precision.float16
105
  if precision in ["torch.bfloat16", "bfloat16"]:
 
111
  if precision in ["GPTQ", "None"]:
112
  return Precision.qt_GPTQ
113
  return Precision.Unknown
 
114
 
115
  # Column selection
116
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
src/envs.py CHANGED
@@ -2,38 +2,19 @@ import os
2
 
3
  from huggingface_hub import HfApi
4
 
 
 
5
 
6
- H4_TOKEN = os.environ.get("HF_SECRET", None)
 
 
 
7
 
8
- # REPO_ID = "pminervini/hallucinations-leaderboard"
9
- REPO_ID = "openlifescienceai/open_medical_llm_leaderboard"
10
-
11
- QUEUE_REPO = "openlifescienceai/test_requests"
12
- RESULTS_REPO = "openlifescienceai/test_results"
13
-
14
- # have not created these repos yet
15
- PRIVATE_QUEUE_REPO = "openlifescienceai/test_private-requests"
16
- PRIVATE_RESULTS_REPO = "openlifescienceai/test_private-results"
17
-
18
- IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
19
-
20
- # CACHE_PATH = "/Users/chaeeunlee/Documents/VSC_workspaces/test_leaderboard" #
21
- CACHE_PATH = os.getenv("HF_HOME", ".")
22
-
23
- print(f"CACHE_PATH = {CACHE_PATH}")
24
 
 
25
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
26
  EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
27
 
28
- EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
29
- EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
30
-
31
- # PATH_TO_COLLECTION = "hallucinations-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03" # ??
32
-
33
- # Rate limit variables
34
- RATE_LIMIT_PERIOD = 7
35
- RATE_LIMIT_QUOTA = 5
36
- HAS_HIGHER_RATE_LIMIT = ["TheBloke"]
37
-
38
- API = HfApi(token=H4_TOKEN)
39
- # API = HfApi()
 
2
 
3
  from huggingface_hub import HfApi
4
 
5
+ # clone / pull the lmeh eval data
6
+ TOKEN = os.environ.get("TOKEN", None)
7
 
8
+ OWNER = "openlifescienceai"
9
+ REPO_ID = f"{OWNER}/open_medical_llm_leaderboard"
10
+ QUEUE_REPO = f"{OWNER}/requests"
11
+ RESULTS_REPO = f"{OWNER}/results"
12
 
13
+ CACHE_PATH=os.getenv("HF_HOME", ".")
14
+ # print("CACHE_PATH", CACHE_PATH)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ # Local caches
17
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
18
  EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
19
 
20
+ API = HfApi(token=TOKEN)
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/filter_models.py DELETED
@@ -1,50 +0,0 @@
1
- from src.display.formatting import model_hyperlink
2
- from src.display.utils import AutoEvalColumn
3
-
4
- # Models which have been flagged by users as being problematic for a reason or another
5
- # (Model name to forum discussion link)
6
- FLAGGED_MODELS = {
7
- "Voicelab/trurl-2-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/202",
8
- "deepnight-research/llama-2-70B-inst": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/207",
9
- "Aspik101/trurl-2-13b-pl-instruct_unload": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/213",
10
- "Fredithefish/ReasonixPajama-3B-HF": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/236",
11
- "TigerResearch/tigerbot-7b-sft-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/237",
12
- "gaodrew/gaodrew-gorgonzola-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/215",
13
- "AIDC-ai-business/Marcoroni-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
14
- "AIDC-ai-business/Marcoroni-13B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
15
- "AIDC-ai-business/Marcoroni-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
16
- }
17
-
18
- # Models which have been requested by orgs to not be submitted on the leaderboard
19
- DO_NOT_SUBMIT_MODELS = [
20
- "Voicelab/trurl-2-13b", # trained on MMLU
21
- ]
22
-
23
-
24
- def flag_models(leaderboard_data: list[dict]):
25
- for model_data in leaderboard_data:
26
- if model_data["model_name_for_query"] in FLAGGED_MODELS:
27
- issue_num = FLAGGED_MODELS[model_data["model_name_for_query"]].split("/")[-1]
28
- issue_link = model_hyperlink(
29
- FLAGGED_MODELS[model_data["model_name_for_query"]],
30
- f"See discussion #{issue_num}",
31
- )
32
- model_data[
33
- AutoEvalColumn.model.name
34
- ] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
35
-
36
-
37
- def remove_forbidden_models(leaderboard_data: list[dict]):
38
- indices_to_remove = []
39
- for ix, model in enumerate(leaderboard_data):
40
- if model["model_name_for_query"] in DO_NOT_SUBMIT_MODELS:
41
- indices_to_remove.append(ix)
42
-
43
- for ix in reversed(indices_to_remove):
44
- leaderboard_data.pop(ix)
45
- return leaderboard_data
46
-
47
-
48
- def filter_models(leaderboard_data: list[dict]):
49
- leaderboard_data = remove_forbidden_models(leaderboard_data)
50
- flag_models(leaderboard_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/read_evals.py CHANGED
@@ -1,5 +1,6 @@
1
  import glob
2
  import json
 
3
  import os
4
  from dataclasses import dataclass
5
 
@@ -13,7 +14,6 @@ from src.submission.check_validity import is_model_on_hub
13
 
14
  @dataclass
15
  class EvalResult:
16
- # Also see src.display.utils.AutoEvalColumn for what will be displayed.
17
  eval_name: str # org_model_precision (uid)
18
  full_model: str # org/model (path on hub)
19
  org: str
@@ -23,21 +23,20 @@ class EvalResult:
23
  precision: Precision = Precision.Unknown
24
  model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
25
  weight_type: WeightType = WeightType.Original # Original or Adapter
26
- architecture: str = "Unknown" # From config file
27
  license: str = "?"
28
  likes: int = 0
29
  num_params: int = 0
30
  date: str = "" # submission date of request file
31
  still_on_hub: bool = False
32
 
33
- @staticmethod
34
- def init_from_json_file(json_filepath, is_backend: bool = False):
35
  """Inits the result from the specific model result file"""
36
  with open(json_filepath) as fp:
37
  data = json.load(fp)
38
 
39
- # We manage the legacy config format
40
- config = data.get("config", data.get("config_general", None))
41
 
42
  # Precision
43
  precision = Precision.from_str(config.get("model_dtype"))
@@ -56,7 +55,9 @@ class EvalResult:
56
  result_key = f"{org}_{model}_{precision.value.name}"
57
  full_model = "/".join(org_and_model)
58
 
59
- still_on_hub, error, model_config = is_model_on_hub(full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False)
 
 
60
  architecture = "?"
61
  if model_config is not None:
62
  architectures = getattr(model_config, "architectures", None)
@@ -65,47 +66,28 @@ class EvalResult:
65
 
66
  # Extract results available in this file (some results are split in several files)
67
  results = {}
68
-
69
- task_iterator = Tasks
70
- if is_backend is True:
71
- from src.backend.envs import Tasks as BackendTasks
72
- task_iterator = BackendTasks
73
-
74
- for task in task_iterator:
75
  task = task.value
76
 
77
- def post_process_results(results: dict) -> dict:
78
- # {'nq_open': {'em': 0.018005540166204988, 'em_stderr': 0.0022134216580395583}}
79
- res_copy = results.copy()
80
-
81
- for task_name in res_copy.keys():
82
- entry_copy = results[task_name].copy()
83
-
84
- for k, v in entry_copy.items():
85
- if "exact_match" in k:
86
- results[task_name][k.replace("exact_match", "em")] = v
87
-
88
- entry_copy = results[task_name].copy()
89
-
90
- for k, v in entry_copy.items():
91
- if "," in k:
92
- tokens = k.split(",")
93
- results[task_name][tokens[0]] = v
94
-
95
- return results
96
-
97
- accs = np.array([v.get(task.metric, None) for k, v in post_process_results(data["results"]).items() if task.benchmark in k])
98
-
99
  if accs.size == 0 or any([acc is None for acc in accs]):
100
  continue
101
 
102
  mean_acc = np.mean(accs) * 100.0
103
- mean_acc = round(mean_acc, 2)
104
  results[task.benchmark] = mean_acc
105
 
106
- return EvalResult(eval_name=result_key, full_model=full_model, org=org, model=model, results=results,
107
- precision=precision, revision=config.get("model_sha", ""), still_on_hub=still_on_hub,
108
- architecture=architecture)
 
 
 
 
 
 
 
 
109
 
110
  def update_with_request_file(self, requests_path):
111
  """Finds the relevant request file for the current model and updates info with it"""
@@ -120,19 +102,12 @@ class EvalResult:
120
  self.likes = request.get("likes", 0)
121
  self.num_params = request.get("params", 0)
122
  self.date = request.get("submitted_time", "")
123
- except Exception as e:
124
- print(f"Could not find request file for {self.org}/{self.model} -- path: {requests_path} -- {e}")
125
-
126
- def is_complete(self) -> bool:
127
- for task in Tasks:
128
- if task.value.benchmark not in self.results:
129
- return False
130
- return True
131
 
132
  def to_dict(self):
133
  """Converts the Eval Result to a dict compatible with our dataframe display"""
134
  average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
135
- average = round(average, 2)
136
  data_dict = {
137
  "eval_name": self.eval_name, # not a column, just a save name,
138
  AutoEvalColumn.precision.name: self.precision.value.name,
@@ -151,48 +126,42 @@ class EvalResult:
151
  }
152
 
153
  for task in Tasks:
154
- if task.value.benchmark in self.results: # XXX
155
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
156
 
157
  return data_dict
158
 
159
 
160
  def get_request_file_for_model(requests_path, model_name, precision):
161
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED and RUNNING"""
162
  request_files = os.path.join(
163
  requests_path,
164
  f"{model_name}_eval_request_*.json",
165
  )
166
  request_files = glob.glob(request_files)
167
 
 
 
168
  # Select correct request file (precision)
169
  request_file = ""
170
  request_files = sorted(request_files, reverse=True)
171
- # print('XXX', request_files)
172
  for tmp_request_file in request_files:
173
  with open(tmp_request_file, "r") as f:
174
  req_content = json.load(f)
175
  if (
176
- # req_content["status"] in ["FINISHED", "RUNNING"] and
177
- req_content["precision"] == precision.split(".")[-1]
178
  ):
179
  request_file = tmp_request_file
180
  return request_file
181
 
182
 
183
- def get_raw_eval_results(results_path: str, requests_path: str, is_backend: bool = False) -> list[EvalResult]:
184
  """From the path of the results folder root, extract all needed info for results"""
185
  model_result_filepaths = []
186
 
187
- print(f"results_path: {results_path}")
188
-
189
- walked_list = list(os.walk(results_path))
190
- print(f"len(walked_list): {len(walked_list)}") # 1
191
-
192
  for root, _, files in os.walk(results_path):
193
  # We should only have json files in model results
194
  if len(files) == 0 or any([not f.endswith(".json") for f in files]):
195
- print("negative condition met")
196
  continue
197
 
198
  # Sort the files by date
@@ -201,16 +170,13 @@ def get_raw_eval_results(results_path: str, requests_path: str, is_backend: bool
201
  except dateutil.parser._parser.ParserError:
202
  files = [files[-1]]
203
 
204
-
205
- print(f"files = {files}")
206
-
207
  for file in files:
208
  model_result_filepaths.append(os.path.join(root, file))
209
 
210
  eval_results = {}
211
  for model_result_filepath in model_result_filepaths:
212
  # Creation of result
213
- eval_result = EvalResult.init_from_json_file(model_result_filepath, is_backend=is_backend)
214
  eval_result.update_with_request_file(requests_path)
215
 
216
  # Store results of same eval together
@@ -222,7 +188,10 @@ def get_raw_eval_results(results_path: str, requests_path: str, is_backend: bool
222
 
223
  results = []
224
  for v in eval_results.values():
225
- results.append(v)
 
 
 
 
226
 
227
- print(f"results = {results}")
228
  return results
 
1
  import glob
2
  import json
3
+ import math
4
  import os
5
  from dataclasses import dataclass
6
 
 
14
 
15
  @dataclass
16
  class EvalResult:
 
17
  eval_name: str # org_model_precision (uid)
18
  full_model: str # org/model (path on hub)
19
  org: str
 
23
  precision: Precision = Precision.Unknown
24
  model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
25
  weight_type: WeightType = WeightType.Original # Original or Adapter
26
+ architecture: str = "Unknown"
27
  license: str = "?"
28
  likes: int = 0
29
  num_params: int = 0
30
  date: str = "" # submission date of request file
31
  still_on_hub: bool = False
32
 
33
+ @classmethod
34
+ def init_from_json_file(self, json_filepath):
35
  """Inits the result from the specific model result file"""
36
  with open(json_filepath) as fp:
37
  data = json.load(fp)
38
 
39
+ config = data.get("config")
 
40
 
41
  # Precision
42
  precision = Precision.from_str(config.get("model_dtype"))
 
55
  result_key = f"{org}_{model}_{precision.value.name}"
56
  full_model = "/".join(org_and_model)
57
 
58
+ still_on_hub, _, model_config = is_model_on_hub(
59
+ full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
60
+ )
61
  architecture = "?"
62
  if model_config is not None:
63
  architectures = getattr(model_config, "architectures", None)
 
66
 
67
  # Extract results available in this file (some results are split in several files)
68
  results = {}
69
+ for task in Tasks:
 
 
 
 
 
 
70
  task = task.value
71
 
72
+ # We average all scores of a given metric (not all metrics are present in all files)
73
+ accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  if accs.size == 0 or any([acc is None for acc in accs]):
75
  continue
76
 
77
  mean_acc = np.mean(accs) * 100.0
 
78
  results[task.benchmark] = mean_acc
79
 
80
+ return self(
81
+ eval_name=result_key,
82
+ full_model=full_model,
83
+ org=org,
84
+ model=model,
85
+ results=results,
86
+ precision=precision,
87
+ revision= config.get("model_sha", ""),
88
+ still_on_hub=still_on_hub,
89
+ architecture=architecture
90
+ )
91
 
92
  def update_with_request_file(self, requests_path):
93
  """Finds the relevant request file for the current model and updates info with it"""
 
102
  self.likes = request.get("likes", 0)
103
  self.num_params = request.get("params", 0)
104
  self.date = request.get("submitted_time", "")
105
+ except Exception:
106
+ print(f"Could not find request file for {self.org}/{self.model}")
 
 
 
 
 
 
107
 
108
  def to_dict(self):
109
  """Converts the Eval Result to a dict compatible with our dataframe display"""
110
  average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
 
111
  data_dict = {
112
  "eval_name": self.eval_name, # not a column, just a save name,
113
  AutoEvalColumn.precision.name: self.precision.value.name,
 
126
  }
127
 
128
  for task in Tasks:
129
+ data_dict[task.value.col_name] = self.results[task.value.benchmark]
 
130
 
131
  return data_dict
132
 
133
 
134
  def get_request_file_for_model(requests_path, model_name, precision):
135
+ """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
136
  request_files = os.path.join(
137
  requests_path,
138
  f"{model_name}_eval_request_*.json",
139
  )
140
  request_files = glob.glob(request_files)
141
 
142
+ print("yahaa", request_files)
143
+
144
  # Select correct request file (precision)
145
  request_file = ""
146
  request_files = sorted(request_files, reverse=True)
 
147
  for tmp_request_file in request_files:
148
  with open(tmp_request_file, "r") as f:
149
  req_content = json.load(f)
150
  if (
151
+ req_content["status"] in ["FINISHED"]
152
+ and req_content["precision"] == precision.split(".")[-1]
153
  ):
154
  request_file = tmp_request_file
155
  return request_file
156
 
157
 
158
+ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
159
  """From the path of the results folder root, extract all needed info for results"""
160
  model_result_filepaths = []
161
 
 
 
 
 
 
162
  for root, _, files in os.walk(results_path):
163
  # We should only have json files in model results
164
  if len(files) == 0 or any([not f.endswith(".json") for f in files]):
 
165
  continue
166
 
167
  # Sort the files by date
 
170
  except dateutil.parser._parser.ParserError:
171
  files = [files[-1]]
172
 
 
 
 
173
  for file in files:
174
  model_result_filepaths.append(os.path.join(root, file))
175
 
176
  eval_results = {}
177
  for model_result_filepath in model_result_filepaths:
178
  # Creation of result
179
+ eval_result = EvalResult.init_from_json_file(model_result_filepath)
180
  eval_result.update_with_request_file(requests_path)
181
 
182
  # Store results of same eval together
 
188
 
189
  results = []
190
  for v in eval_results.values():
191
+ try:
192
+ v.to_dict() # we test if the dict version is complete
193
+ results.append(v)
194
+ except KeyError: # not all eval values present
195
+ continue
196
 
 
197
  return results
src/populate.py CHANGED
@@ -5,56 +5,23 @@ import pandas as pd
5
 
6
  from src.display.formatting import has_no_nan_values, make_clickable_model
7
  from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
- from src.leaderboard.filter_models import filter_models
9
- from src.leaderboard.read_evals import get_raw_eval_results, EvalResult
10
 
11
- '''
12
- This function, get_leaderboard_df, is designed to read and process evaluation results from a specified results path and requests path,
13
- ultimately producing a leaderboard in the form of a pandas DataFrame. The process involves several steps, including filtering, sorting,
14
- and cleaning the data based on specific criteria. Let's break down the function step by step:
15
-
16
- '''
17
-
18
- ## TO-DO: if raw_data is [], return dummy df with correct columns so that the UI shows the right columns
19
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> tuple[list[EvalResult], pd.DataFrame]:
20
-
21
- print(f"results_path = {results_path}")
22
 
 
23
  raw_data = get_raw_eval_results(results_path, requests_path)
24
-
25
- all_data_json = [v.to_dict() for v in raw_data] # if v.is_complete()]
26
- # all_data_json.append(baseline_row)
27
- filter_models(all_data_json)
28
-
29
- print(f"all_data_json = {all_data_json}")
30
 
31
  df = pd.DataFrame.from_records(all_data_json)
 
 
32
 
33
- task_attributes = []
34
-
35
- # Iterate over all attributes of AutoEvalColumn class
36
- for attr_name in dir(AutoEvalColumn):
37
- # Retrieve the attribute object
38
- attr = getattr(AutoEvalColumn, attr_name)
39
- # Check if the attribute has 'is_task' attribute and it is True
40
- if hasattr(attr, 'is_task') and getattr(attr, 'is_task'):
41
- task_attributes.append(attr)
42
-
43
- # Now task_attributes contains all attributes where is_task=True
44
- # print(task_attributes)
45
- task_col_names_all = [str(item.name) for item in task_attributes]
46
-
47
- # import pdb; pdb.set_trace()
48
-
49
- # Add empty columns with specified names
50
- for col_name in task_col_names_all:
51
- if col_name not in df.columns:
52
- df[col_name] = None
53
-
54
  return raw_data, df
55
 
56
 
57
- def get_evaluation_queue_df(save_path: str, cols: list) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
58
  entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
59
  all_evals = []
60
 
 
5
 
6
  from src.display.formatting import has_no_nan_values, make_clickable_model
7
  from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
+ from src.leaderboard.read_evals import get_raw_eval_results
 
9
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
  raw_data = get_raw_eval_results(results_path, requests_path)
13
+ all_data_json = [v.to_dict() for v in raw_data]
 
 
 
 
 
14
 
15
  df = pd.DataFrame.from_records(all_data_json)
16
+ df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
17
+ df = df[cols].round(decimals=2)
18
 
19
+ # filter out if any of the benchmarks have not been produced
20
+ df = df[has_no_nan_values(df, benchmark_cols)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  return raw_data, df
22
 
23
 
24
+ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
25
  entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
26
  all_evals = []
27
 
src/submission/check_validity.py CHANGED
@@ -7,17 +7,11 @@ from datetime import datetime, timedelta, timezone
7
  import huggingface_hub
8
  from huggingface_hub import ModelCard
9
  from huggingface_hub.hf_api import ModelInfo
10
- # from transformers import AutoConfig
11
- from transformers import AutoConfig, AutoTokenizer
12
  from transformers.models.auto.tokenization_auto import tokenizer_class_from_name, get_tokenizer_config
13
 
14
- from src.envs import HAS_HIGHER_RATE_LIMIT
15
-
16
-
17
- # ht to @Wauplin, thank you for the snippet!
18
- # See https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/317
19
  def check_model_card(repo_id: str) -> tuple[bool, str]:
20
- # Returns operation status, and error message
21
  try:
22
  card = ModelCard.load(repo_id)
23
  except huggingface_hub.utils.EntryNotFoundError:
@@ -38,58 +32,28 @@ def check_model_card(repo_id: str) -> tuple[bool, str]:
38
  return True, ""
39
 
40
 
41
- # def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
42
- # try:
43
- # config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
44
- # if test_tokenizer:
45
- # tokenizer_config = get_tokenizer_config(model_name)
46
-
47
- # if tokenizer_config is not None:
48
- # tokenizer_class_candidate = tokenizer_config.get("tokenizer_class", None)
49
- # else:
50
- # tokenizer_class_candidate = config.tokenizer_class
51
-
52
- # tokenizer_class = None
53
- # if tokenizer_class_candidate is not None:
54
- # tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
55
-
56
- # if tokenizer_class is None:
57
- # return (
58
- # False,
59
- # f"uses {tokenizer_class_candidate}, which is not in a transformers release, therefore not supported at the moment.", # pythia-160m throws this error. seems unnecessary.
60
- # None
61
- # )
62
- # return True, None, config
63
-
64
- # except ValueError:
65
- # return (
66
- # False,
67
- # "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
68
- # None
69
- # )
70
-
71
- # except Exception as e:
72
- # print('XXX', e)
73
- # return False, "was not found on hub!", None
74
-
75
- # replaced with https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/blob/main/src/submission/check_validity.py
76
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str, AutoConfig]:
77
  try:
78
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) #, force_download=True)
79
  if test_tokenizer:
80
- try:
81
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
82
- except ValueError as e:
 
 
 
 
 
 
83
  return (
84
  False,
85
- f"uses a tokenizer which is not in a transformers release: {e}",
86
  None
87
  )
88
- except Exception as e:
89
- return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
90
  return True, None, config
91
 
92
- except ValueError as e:
93
  return (
94
  False,
95
  "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
@@ -99,77 +63,25 @@ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_rem
99
  except Exception as e:
100
  return False, "was not found on hub!", None
101
 
 
102
  def get_model_size(model_info: ModelInfo, precision: str):
103
- size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
104
  try:
105
  model_size = round(model_info.safetensors["total"] / 1e9, 3)
106
- except (AttributeError, TypeError ):
107
- try:
108
- size_match = re.search(size_pattern, model_info.modelId.lower())
109
- model_size = size_match.group(0)
110
- model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
111
- except AttributeError:
112
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
113
 
114
  size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
115
  model_size = size_factor * model_size
116
  return model_size
117
 
118
  def get_model_arch(model_info: ModelInfo):
 
119
  return model_info.config.get("architectures", "Unknown")
120
 
121
- def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
122
- if org_or_user not in users_to_submission_dates:
123
- return True, ""
124
- submission_dates = sorted(users_to_submission_dates[org_or_user])
125
-
126
- time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
127
- submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
128
-
129
- num_models_submitted_in_period = len(submissions_after_timelimit)
130
- if org_or_user in HAS_HIGHER_RATE_LIMIT:
131
- rate_limit_quota = 2 * rate_limit_quota
132
-
133
- if num_models_submitted_in_period > rate_limit_quota:
134
- error_msg = f"Organisation or user `{org_or_user}`"
135
- error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
136
- error_msg += f"in the last {rate_limit_period} days.\n"
137
- error_msg += (
138
- "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
139
- )
140
- return False, error_msg
141
- return True, ""
142
-
143
-
144
- # # already_submitted_models(EVAL_REQUESTS_PATH) os.path.join(CACHE_PATH, "eval-queue")
145
- # # REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
146
- # # debug: current code doesn't allow submission of the same model for a different task.
147
- # def already_submitted_models(requested_models_dir: str) -> set[str]:
148
- # depth = 1
149
- # file_names = []
150
- # users_to_submission_dates = defaultdict(list)
151
-
152
- # for root, _, files in os.walk(requested_models_dir):
153
- # current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
154
- # if current_depth == depth:
155
- # for file in files:
156
- # if not file.endswith(".json"):
157
- # continue
158
- # with open(os.path.join(root, file), "r") as f:
159
- # info = json.load(f)
160
- # file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
161
-
162
- # # Select organisation
163
- # if info["model"].count("/") == 0 or "submitted_time" not in info:
164
- # continue
165
- # organisation, _ = info["model"].split("/")
166
- # users_to_submission_dates[organisation].append(info["submitted_time"]) # why is this useful?
167
-
168
- # return set(file_names), users_to_submission_dates
169
-
170
  def already_submitted_models(requested_models_dir: str) -> set[str]:
171
  depth = 1
172
- file_names = [] # more like identifiers
173
  users_to_submission_dates = defaultdict(list)
174
 
175
  for root, _, files in os.walk(requested_models_dir):
@@ -180,15 +92,12 @@ def already_submitted_models(requested_models_dir: str) -> set[str]:
180
  continue
181
  with open(os.path.join(root, file), "r") as f:
182
  info = json.load(f)
183
- requested_tasks = [task_dic['benchmark'] for task_dic in info["requested_tasks"]]
184
- for requested_task in requested_tasks:
185
-
186
- file_names.append(f"{info['model']}_{requested_task}_{info['revision']}_{info['precision']}")
187
 
188
- # Select organisation
189
- if info["model"].count("/") == 0 or "submitted_time" not in info:
190
- continue
191
- organisation, _ = info["model"].split("/")
192
- users_to_submission_dates[organisation].append(info["submitted_time"]) # why is this useful?
193
 
194
  return set(file_names), users_to_submission_dates
 
7
  import huggingface_hub
8
  from huggingface_hub import ModelCard
9
  from huggingface_hub.hf_api import ModelInfo
10
+ from transformers import AutoConfig
 
11
  from transformers.models.auto.tokenization_auto import tokenizer_class_from_name, get_tokenizer_config
12
 
 
 
 
 
 
13
  def check_model_card(repo_id: str) -> tuple[bool, str]:
14
+ """Checks if the model card and license exist and have been filled"""
15
  try:
16
  card = ModelCard.load(repo_id)
17
  except huggingface_hub.utils.EntryNotFoundError:
 
32
  return True, ""
33
 
34
 
35
+ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
36
+ """Makes sure the model is on the hub, and uses a valid configuration (in the latest transformers version)"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  try:
38
+ config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
39
  if test_tokenizer:
40
+ tokenizer_config = get_tokenizer_config(model_name)
41
+ if tokenizer_config is not None:
42
+ tokenizer_class_candidate = tokenizer_config.get("tokenizer_class", None)
43
+ else:
44
+ tokenizer_class_candidate = config.tokenizer_class
45
+
46
+
47
+ tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
48
+ if tokenizer_class is None:
49
  return (
50
  False,
51
+ f"uses {tokenizer_class_candidate}, which is not in a transformers release, therefore not supported at the moment.",
52
  None
53
  )
 
 
54
  return True, None, config
55
 
56
+ except ValueError:
57
  return (
58
  False,
59
  "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
 
63
  except Exception as e:
64
  return False, "was not found on hub!", None
65
 
66
+
67
  def get_model_size(model_info: ModelInfo, precision: str):
68
+ """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
69
  try:
70
  model_size = round(model_info.safetensors["total"] / 1e9, 3)
71
+ except (AttributeError, TypeError):
72
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
 
 
 
 
 
73
 
74
  size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
75
  model_size = size_factor * model_size
76
  return model_size
77
 
78
  def get_model_arch(model_info: ModelInfo):
79
+ """Gets the model architecture from the configuration"""
80
  return model_info.config.get("architectures", "Unknown")
81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
  def already_submitted_models(requested_models_dir: str) -> set[str]:
83
  depth = 1
84
+ file_names = []
85
  users_to_submission_dates = defaultdict(list)
86
 
87
  for root, _, files in os.walk(requested_models_dir):
 
92
  continue
93
  with open(os.path.join(root, file), "r") as f:
94
  info = json.load(f)
95
+ file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
 
 
 
96
 
97
+ # Select organisation
98
+ if info["model"].count("/") == 0 or "submitted_time" not in info:
99
+ continue
100
+ organisation, _ = info["model"].split("/")
101
+ users_to_submission_dates[organisation].append(info["submitted_time"])
102
 
103
  return set(file_names), users_to_submission_dates
src/submission/submit.py CHANGED
@@ -3,32 +3,22 @@ import os
3
  from datetime import datetime, timezone
4
 
5
  from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
7
- from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
8
  from src.submission.check_validity import (
9
  already_submitted_models,
10
  check_model_card,
11
  get_model_size,
12
  is_model_on_hub,
13
- user_submission_permission,
14
  )
15
 
16
- ## it just uploads request file. where does the evaluation actually happen?
17
-
18
  REQUESTED_MODELS = None
19
  USERS_TO_SUBMISSION_DATES = None
20
 
21
-
22
  def add_new_eval(
23
  model: str,
24
-
25
- requested_tasks: list, # write better type hints. this is list of class Task.
26
-
27
-
28
  base_model: str,
29
  revision: str,
30
  precision: str,
31
- private: bool,
32
  weight_type: str,
33
  model_type: str,
34
  ):
@@ -36,7 +26,6 @@ def add_new_eval(
36
  global USERS_TO_SUBMISSION_DATES
37
  if not REQUESTED_MODELS:
38
  REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
39
- # REQUESTED_MODELS is set(file_names), where file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
40
 
41
  user_name = ""
42
  model_path = model
@@ -50,25 +39,13 @@ def add_new_eval(
50
  if model_type is None or model_type == "":
51
  return styled_error("Please select a model type.")
52
 
53
- # Is the user rate limited?
54
- if user_name != "":
55
- user_can_submit, error_msg = user_submission_permission(
56
- user_name, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
57
- )
58
- if not user_can_submit:
59
- return styled_error(error_msg)
60
-
61
- # Did the model authors forbid its submission to the leaderboard?
62
- if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
63
- return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
64
-
65
  # Does the model actually exist?
66
  if revision == "":
67
  revision = "main"
68
 
69
  # Is the model on the hub?
70
  if weight_type in ["Delta", "Adapter"]:
71
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=H4_TOKEN, test_tokenizer=True)
72
  if not base_model_on_hub:
73
  return styled_error(f'Base model "{base_model}" {error}')
74
 
@@ -98,54 +75,10 @@ def add_new_eval(
98
  # Seems good, creating the eval
99
  print("Adding new eval")
100
 
101
- print()
102
- print(f"requested_tasks: {requested_tasks}")
103
- print(f"type(requested_tasks): {type(requested_tasks)}")
104
- print()
105
- # requested_tasks: [{'benchmark': 'hellaswag', 'metric': 'acc_norm', 'col_name': 'HellaSwag'}, {'benchmark': 'pubmedqa', 'metric': 'acc', 'col_name': 'PubMedQA'}]
106
- # type(requested_tasks): <class 'list'>
107
-
108
- requested_task_names = [task_dic['benchmark'] for task_dic in requested_tasks]
109
-
110
- print()
111
- print(f"requested_task_names: {requested_task_names}")
112
- print(f"type(requested_task_names): {type(requested_task_names)}")
113
- print()
114
-
115
- already_submitted_tasks = []
116
-
117
- for requested_task_name in requested_task_names:
118
-
119
- if f"{model}_{requested_task_name}_{revision}_{precision}" in REQUESTED_MODELS:
120
- # return styled_warning("This model has been already submitted.")
121
- already_submitted_tasks.append(requested_task_name)
122
-
123
- task_names_for_eval = set(requested_task_names) - set(already_submitted_tasks)
124
- task_names_for_eval = list(task_names_for_eval)
125
-
126
- return_msg = "Your request has been submitted to the evaluation queue! Please wait for up to an hour for the model to show in the PENDING list."
127
- if len(already_submitted_tasks) > 0:
128
-
129
- return_msg = f"This model has been already submitted for task(s) {already_submitted_tasks}. Evaluation will proceed for tasks {task_names_for_eval}. Please wait for up to an hour for the model to show in the PENDING list."
130
-
131
- if len(task_names_for_eval)==0:
132
- return styled_warning(f"This model has been already submitted for task(s) {already_submitted_tasks}.")
133
-
134
- tasks_for_eval = [dct for dct in requested_tasks if dct['benchmark'] in task_names_for_eval]
135
-
136
- print()
137
- print(f"tasks_for_eval: {tasks_for_eval}")
138
- # print(f"type(requested_task_names): {type(requested_task_names)}")
139
- print()
140
-
141
  eval_entry = {
142
  "model": model,
143
-
144
- "requested_tasks": tasks_for_eval, # this is a list of tasks. would eval file be written correctly for each tasks? YES. run_evaluation() takes list of tasks. might have to specify
145
-
146
  "base_model": base_model,
147
  "revision": revision,
148
- "private": private,
149
  "precision": precision,
150
  "weight_type": weight_type,
151
  "status": "PENDING",
@@ -155,25 +88,20 @@ def add_new_eval(
155
  "params": model_size,
156
  "license": license,
157
  }
158
-
159
-
160
- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####---- ####----
161
-
162
 
 
 
 
163
 
164
  print("Creating eval file")
165
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" # local path
166
  os.makedirs(OUT_DIR, exist_ok=True)
167
- out_path = f"{OUT_DIR}/{model_path}_{'_'.join([f'{task}' for task in task_names_for_eval])}_eval_request_{private}_{precision}_{weight_type}.json"
168
-
169
- print(f"out_path = {out_path}")
170
 
171
  with open(out_path, "w") as f:
172
- f.write(json.dumps(eval_entry)) # local path used! for saving request file.
173
 
174
- print("Uploading eval file (QUEUE_REPO)")
175
- print()
176
- print(f"path_or_fileobj={out_path}, path_in_repo={out_path.split('eval-queue/')[1]}, repo_id={QUEUE_REPO}, repo_type=dataset,")
177
  API.upload_file(
178
  path_or_fileobj=out_path,
179
  path_in_repo=out_path.split("eval-queue/")[1],
@@ -182,10 +110,9 @@ def add_new_eval(
182
  commit_message=f"Add {model} to eval queue",
183
  )
184
 
185
- print(f"is os.remove(out_path) the problem?")
186
  # Remove the local file
187
  os.remove(out_path)
188
 
189
  return styled_message(
190
- return_msg
191
  )
 
3
  from datetime import datetime, timezone
4
 
5
  from src.display.formatting import styled_error, styled_message, styled_warning
6
+ from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
 
7
  from src.submission.check_validity import (
8
  already_submitted_models,
9
  check_model_card,
10
  get_model_size,
11
  is_model_on_hub,
 
12
  )
13
 
 
 
14
  REQUESTED_MODELS = None
15
  USERS_TO_SUBMISSION_DATES = None
16
 
 
17
  def add_new_eval(
18
  model: str,
 
 
 
 
19
  base_model: str,
20
  revision: str,
21
  precision: str,
 
22
  weight_type: str,
23
  model_type: str,
24
  ):
 
26
  global USERS_TO_SUBMISSION_DATES
27
  if not REQUESTED_MODELS:
28
  REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
 
29
 
30
  user_name = ""
31
  model_path = model
 
39
  if model_type is None or model_type == "":
40
  return styled_error("Please select a model type.")
41
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  # Does the model actually exist?
43
  if revision == "":
44
  revision = "main"
45
 
46
  # Is the model on the hub?
47
  if weight_type in ["Delta", "Adapter"]:
48
+ base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
  if not base_model_on_hub:
50
  return styled_error(f'Base model "{base_model}" {error}')
51
 
 
75
  # Seems good, creating the eval
76
  print("Adding new eval")
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  eval_entry = {
79
  "model": model,
 
 
 
80
  "base_model": base_model,
81
  "revision": revision,
 
82
  "precision": precision,
83
  "weight_type": weight_type,
84
  "status": "PENDING",
 
88
  "params": model_size,
89
  "license": license,
90
  }
 
 
 
 
91
 
92
+ # Check for duplicate submission
93
+ if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
94
+ return styled_warning("This model has been already submitted.")
95
 
96
  print("Creating eval file")
97
+ OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
98
  os.makedirs(OUT_DIR, exist_ok=True)
99
+ out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
 
 
100
 
101
  with open(out_path, "w") as f:
102
+ f.write(json.dumps(eval_entry))
103
 
104
+ print("Uploading eval file")
 
 
105
  API.upload_file(
106
  path_or_fileobj=out_path,
107
  path_in_repo=out_path.split("eval-queue/")[1],
 
110
  commit_message=f"Add {model} to eval queue",
111
  )
112
 
 
113
  # Remove the local file
114
  os.remove(out_path)
115
 
116
  return styled_message(
117
+ "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
118
  )
src/utils.py DELETED
@@ -1,29 +0,0 @@
1
- import pandas as pd
2
- from huggingface_hub import snapshot_download
3
-
4
-
5
- def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
6
- for i in range(10):
7
- try:
8
- snapshot_download(repo_id=repo_id, revision=revision, local_dir=local_dir, repo_type=repo_type, max_workers=max_workers)
9
- return
10
- except Exception:
11
- import time
12
- time.sleep(60)
13
- return
14
-
15
-
16
- def get_dataset_url(row):
17
- dataset_name = row['Benchmark']
18
- dataset_url = row['Dataset Link']
19
- benchmark = f'<a target="_blank" href="{dataset_url}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{dataset_name}</a>'
20
- return benchmark
21
-
22
- def get_dataset_summary_table(file_path):
23
- df = pd.read_csv(file_path)
24
-
25
- df['Benchmark'] = df.apply(lambda x: get_dataset_url(x), axis=1)
26
-
27
- df = df[['Category', 'Benchmark', 'Data Split', 'Data Size', 'Language']]
28
-
29
- return df