Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# import json | |
# import os | |
# import logging | |
# from datetime import datetime | |
# from lm_eval import tasks, evaluator, utils | |
# from src.envs import RESULTS_REPO, API | |
# from src.backend.manage_requests import EvalRequest | |
# logging.getLogger("openai").setLevel(logging.WARNING) | |
# def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None): | |
# if limit: | |
# print( | |
# "WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT." | |
# ) | |
# task_names = ["medmcqa", "medqa_4options", "mmlu_anatomy", "mmlu_clinical_knowledge", "mmlu_college_biology", "mmlu_college_medicine", "mmlu_medical_genetics", "mmlu_professional_medicine", "pubmedqa"] | |
# print(f"Selected Tasks: {task_names}") | |
# results = evaluator.simple_evaluate( | |
# model="hf-causal-experimental", # "hf-causal" | |
# model_args=eval_request.get_model_args(), | |
# tasks=task_names, | |
# # num_fewshot=num_fewshot, | |
# batch_size=batch_size, | |
# device=device, | |
# no_cache=no_cache, | |
# limit=limit, | |
# write_out=True, | |
# output_base_path="logs" | |
# ) | |
# results["config"]["model_dtype"] = eval_request.precision | |
# results["config"]["model_name"] = eval_request.model | |
# results["config"]["model_sha"] = eval_request.revision | |
# dumped = json.dumps(results, indent=2) | |
# print(dumped) | |
# output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json") | |
# os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
# with open(output_path, "w") as f: | |
# f.write(dumped) | |
# print(evaluator.make_table(results)) | |
# API.upload_file( | |
# path_or_fileobj=output_path, | |
# path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json", | |
# repo_id=results_repo, | |
# repo_type="dataset", | |
# ) | |
# return results | |
import json | |
import os | |
import logging | |
from datetime import datetime | |
from lm_eval import tasks, evaluator, utils | |
import requests | |
from src.envs import RESULTS_REPO, API | |
from src.backend.manage_requests import EvalRequest | |
logging.getLogger("openai").setLevel(logging.WARNING) | |
def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None): | |
if limit: | |
print( | |
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT." | |
) | |
task_names = ["medmcqa", "medqa_4options", "mmlu_anatomy", "mmlu_clinical_knowledge", "mmlu_college_biology", "mmlu_college_medicine", "mmlu_medical_genetics", "mmlu_professional_medicine", "pubmedqa"] | |
print(f"Selected Tasks: {task_names}") | |
url = os.environ.get("URL") | |
data = {"args": f"pretrained={eval_request.model}"} | |
print("datasending", data) | |
response = requests.post(url, json=data, verify=False) | |
print("response, response", response) | |
results_full = {'results': {}, 'config': {}} | |
# url = os.environ.get("URL") | |
# headers = { | |
# 'bypass-tunnel-reminder': 'anyvalue' | |
# } | |
# data = {"args": f"pretrained={eval_request.model}"} | |
# print("datasending", data) | |
# response = requests.post(url, json=data, headers=headers) | |
# print("response, response", response) | |
# results_full = {'results': {}, 'config': {}} | |
results_full['results'] = response.json()['result']['results'] | |
results_full["config"]["model_dtype"] = eval_request.precision | |
results_full["config"]["model_name"] = eval_request.model | |
results_full["config"]["model_sha"] = eval_request.revision | |
dumped = json.dumps(results_full, indent=2) | |
# print(dumped) | |
output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json") | |
os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
with open(output_path, "w") as f: | |
f.write(dumped) | |
# print(evaluator.make_table(results_full)) | |
API.upload_file( | |
path_or_fileobj=output_path, | |
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json", | |
repo_id=results_repo, | |
repo_type="dataset", | |
) | |
return results_full |