MotzWanted's picture
feat: fork biomed leaderboard
be62d39
raw
history blame
6.82 kB
#!/usr/bin/env python
import os
import json
import random
from datetime import datetime
from src.backend.run_eval_suite import run_evaluation
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
from src.backend.sort_queue import sort_models_by_priority
from src.backend.envs import EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Tasks, Task, num_fewshots
from src.backend.manage_requests import EvalRequest
from src.leaderboard.read_evals import EvalResult
from src.envs import QUEUE_REPO, RESULTS_REPO, API
from src.utils import my_snapshot_download
import time
import logging
import pprint
import argparse
# def get_subdirectories(path):
# subdirectories = []
# # Get all entries in the directory
# entries = os.listdir(path)
# for entry in entries:
# # Check if the entry is a directory
# if os.path.isdir(os.path.join(path, entry)):
# subdirectories.append(entry)
# return subdirectories
# parser = argparse.ArgumentParser(description="Get subdirectory names")
# parser.add_argument("include_path", help="Path to the directory", nargs='?', default=None)
# args = parser.parse_args()
# # = get_subdirectories(args.include_path)
def my_set_eval_request(api, eval_request, set_to_status, hf_repo, local_dir):
for i in range(10):
try:
set_eval_request(api=api, eval_request=eval_request, set_to_status=set_to_status, hf_repo=hf_repo, local_dir=local_dir)
return
except Exception:
time.sleep(60)
return
logging.getLogger("openai").setLevel(logging.WARNING)
logging.basicConfig(level=logging.ERROR)
pp = pprint.PrettyPrinter(width=80)
PENDING_STATUS = "PENDING"
RUNNING_STATUS = "RUNNING"
FINISHED_STATUS = "FINISHED"
FAILED_STATUS = "FAILED"
TASKS_HARNESS = [task.value for task in Tasks]
# starts by downloading results and requests. makes sense since we want to be able to use different backend servers!
my_snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
def sanity_checks():
print(f'Device: {DEVICE}')
# pull the eval dataset from the hub and parse any eval requests
# check completed evals and set them to finished
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
check_completed_evals(api=API, checked_status=RUNNING_STATUS, completed_status=FINISHED_STATUS,
failed_status=FAILED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND,
hf_repo_results=RESULTS_REPO, local_dir_results=EVAL_RESULTS_PATH_BACKEND)
return
def request_to_result_name(request: EvalRequest) -> str:
org_and_model = request.model.split("/", 1)
if len(org_and_model) == 1:
model = org_and_model[0]
res = f"{model}_{request.precision}"
else:
org = org_and_model[0]
model = org_and_model[1]
res = f"{org}_{model}_{request.precision}"
return res
# doesn't make distinctions for tasks since the original code runs eval on ALL tasks.
def process_evaluation(task_name: str, eval_request: EvalRequest) -> dict:
# batch_size = 1
batch_size = "auto"
# might not have to get the benchmark.
print(f"task_name parameter in process_evaluation() = {task_name}") #, task_names=[task.benchmark] = {[task.benchmark]}")
num_fewshot = num_fewshots[task_name]
results = run_evaluation(eval_request=eval_request, task_names=task_name, num_fewshot=num_fewshot,
batch_size=batch_size, device=DEVICE, use_cache=None, limit=LIMIT)
print('RESULTS', results)
dumped = json.dumps(results, indent=2, default=lambda o: '<not serializable>')
print(dumped)
output_path = os.path.join(EVAL_RESULTS_PATH_BACKEND, *eval_request.model.split("/"), f"results_{task_name}_{datetime.now()}.json")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
with open(output_path, "w") as f:
f.write(dumped)
my_snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
API.upload_file(path_or_fileobj=output_path, path_in_repo=f"{eval_request.model}/results_{task_name}_{datetime.now()}.json",
repo_id=RESULTS_REPO, repo_type="dataset")
return results
# the rendering is done with files in local repo.
def process_pending_requests() -> bool:
sanity_checks()
current_pending_status = [PENDING_STATUS]
# Get all eval request that are PENDING, if you want to run other evals, change this parameter
# GETTING REQUESTS FROM THE HUB NOT LOCAL DIR.
eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
# Sort the evals by priority (first submitted first run)
eval_requests = sort_models_by_priority(api=API, models=eval_requests)
random.shuffle(eval_requests)
# this says zero
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
if len(eval_requests) == 0:
return False
eval_request = eval_requests[0]
pp.pprint(eval_request)
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
my_set_eval_request(api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
# task_lst = TASKS_HARNESS.copy()
task_lst = eval_request.get_user_requested_task_names()
random.shuffle(task_lst)
print(f"task_lst in process_pending_requests(): {task_lst}")
for task_name in task_lst:
results = process_evaluation(task_name, eval_request)
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
my_set_eval_request(api=API, eval_request=eval_request, set_to_status=FINISHED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
return True
if __name__ == "__main__":
# wait = True
# import socket
# if socket.gethostname() in {'hamburg'} or os.path.isdir("/home/pminervi"):
# wait = False
# if wait:
# time.sleep(60 * random.randint(2, 5))
# pass
# res = False
res = process_pending_requests()
# if res is False:
# res = process_finished_requests(100)
# if res is False:
# res = process_finished_requests(0)