Update app-backup.py
Browse files- app-backup.py +169 -297
app-backup.py
CHANGED
@@ -5,8 +5,7 @@ import logging
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import spaces
|
8 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
9 |
-
from diffusers.pipelines import FluxControlNetPipeline
|
10 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
11 |
from diffusers.utils import load_image
|
12 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
@@ -21,7 +20,7 @@ import numpy as np
|
|
21 |
import warnings
|
22 |
|
23 |
|
24 |
-
huggingface_token = os.getenv("
|
25 |
|
26 |
|
27 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
|
@@ -61,23 +60,6 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
61 |
torch_dtype=dtype
|
62 |
).to(device)
|
63 |
|
64 |
-
# Upscale을 위한 ControlNet 설정
|
65 |
-
controlnet = FluxControlNetModel.from_pretrained(
|
66 |
-
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
67 |
-
).to(device)
|
68 |
-
|
69 |
-
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
70 |
-
pipe_upscale = FluxControlNetPipeline(
|
71 |
-
vae=pipe.vae,
|
72 |
-
text_encoder=pipe.text_encoder,
|
73 |
-
text_encoder_2=pipe.text_encoder_2,
|
74 |
-
tokenizer=pipe.tokenizer,
|
75 |
-
tokenizer_2=pipe.tokenizer_2,
|
76 |
-
transformer=pipe.transformer,
|
77 |
-
scheduler=pipe.scheduler,
|
78 |
-
controlnet=controlnet
|
79 |
-
).to(device)
|
80 |
-
|
81 |
MAX_SEED = 2**32 - 1
|
82 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
83 |
|
@@ -118,25 +100,30 @@ def download_file(url, directory=None):
|
|
118 |
file.write(response.content)
|
119 |
|
120 |
return filepath
|
121 |
-
|
122 |
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
|
123 |
selected_index = evt.index
|
124 |
selected_indices = selected_indices or []
|
125 |
if selected_index in selected_indices:
|
126 |
selected_indices.remove(selected_index)
|
127 |
else:
|
128 |
-
if len(selected_indices) <
|
129 |
selected_indices.append(selected_index)
|
130 |
else:
|
131 |
-
gr.Warning("You can select up to
|
132 |
-
return gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), width, height, gr.update(), gr.update()
|
133 |
|
134 |
-
selected_info_1 = "Select
|
135 |
-
selected_info_2 = "Select
|
|
|
|
|
136 |
lora_scale_1 = 1.15
|
137 |
lora_scale_2 = 1.15
|
|
|
138 |
lora_image_1 = None
|
139 |
lora_image_2 = None
|
|
|
|
|
140 |
if len(selected_indices) >= 1:
|
141 |
lora1 = loras_state[selected_indices[0]]
|
142 |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
@@ -145,71 +132,78 @@ def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, h
|
|
145 |
lora2 = loras_state[selected_indices[1]]
|
146 |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
147 |
lora_image_2 = lora2['image']
|
148 |
-
|
|
|
|
|
|
|
|
|
149 |
if selected_indices:
|
150 |
last_selected_lora = loras_state[selected_indices[-1]]
|
151 |
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
|
152 |
else:
|
153 |
new_placeholder = "Type a prompt after selecting a LoRA"
|
154 |
|
155 |
-
return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2
|
156 |
-
|
157 |
-
def remove_lora_1(selected_indices, loras_state):
|
158 |
-
if len(selected_indices) >= 1:
|
159 |
-
selected_indices.pop(0)
|
160 |
-
selected_info_1 = "Select a LoRA 1"
|
161 |
-
selected_info_2 = "Select a LoRA 2"
|
162 |
-
lora_scale_1 = 1.15
|
163 |
-
lora_scale_2 = 1.15
|
164 |
-
lora_image_1 = None
|
165 |
-
lora_image_2 = None
|
166 |
-
if len(selected_indices) >= 1:
|
167 |
-
lora1 = loras_state[selected_indices[0]]
|
168 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
|
169 |
-
lora_image_1 = lora1['image']
|
170 |
-
if len(selected_indices) >= 2:
|
171 |
-
lora2 = loras_state[selected_indices[1]]
|
172 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
|
173 |
-
lora_image_2 = lora2['image']
|
174 |
-
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
|
175 |
|
176 |
-
def
|
177 |
-
if len(selected_indices)
|
178 |
-
selected_indices.pop(
|
|
|
179 |
selected_info_1 = "Select LoRA 1"
|
180 |
selected_info_2 = "Select LoRA 2"
|
|
|
181 |
lora_scale_1 = 1.15
|
182 |
lora_scale_2 = 1.15
|
|
|
183 |
lora_image_1 = None
|
184 |
lora_image_2 = None
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
def randomize_loras(selected_indices, loras_state):
|
196 |
try:
|
197 |
-
if len(loras_state) <
|
198 |
raise gr.Error("Not enough LoRAs to randomize.")
|
199 |
-
selected_indices = random.sample(range(len(loras_state)),
|
200 |
lora1 = loras_state[selected_indices[0]]
|
201 |
lora2 = loras_state[selected_indices[1]]
|
|
|
202 |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
203 |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
|
|
204 |
lora_scale_1 = 1.15
|
205 |
lora_scale_2 = 1.15
|
206 |
-
|
207 |
-
|
|
|
|
|
208 |
random_prompt = random.choice(prompt_values)
|
209 |
-
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, random_prompt
|
210 |
except Exception as e:
|
211 |
print(f"Error in randomize_loras: {str(e)}")
|
212 |
-
return "Error", "Error", [], 1.15, 1.15,
|
213 |
|
214 |
def add_custom_lora(custom_lora, selected_indices, current_loras):
|
215 |
if custom_lora:
|
@@ -234,18 +228,21 @@ def add_custom_lora(custom_lora, selected_indices, current_loras):
|
|
234 |
# Update gallery
|
235 |
gallery_items = [(item["image"], item["title"]) for item in current_loras]
|
236 |
# Update selected_indices if there's room
|
237 |
-
if len(selected_indices) <
|
238 |
selected_indices.append(existing_item_index)
|
239 |
else:
|
240 |
-
gr.Warning("You can select up to
|
241 |
|
242 |
# Update selected_info and images
|
243 |
selected_info_1 = "Select a LoRA 1"
|
244 |
selected_info_2 = "Select a LoRA 2"
|
|
|
245 |
lora_scale_1 = 1.15
|
246 |
lora_scale_2 = 1.15
|
|
|
247 |
lora_image_1 = None
|
248 |
lora_image_2 = None
|
|
|
249 |
if len(selected_indices) >= 1:
|
250 |
lora1 = current_loras[selected_indices[0]]
|
251 |
selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨"
|
@@ -254,24 +251,31 @@ def add_custom_lora(custom_lora, selected_indices, current_loras):
|
|
254 |
lora2 = current_loras[selected_indices[1]]
|
255 |
selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨"
|
256 |
lora_image_2 = lora2['image'] if lora2['image'] else None
|
|
|
|
|
|
|
|
|
257 |
print("Finished adding custom LoRA")
|
258 |
return (
|
259 |
current_loras,
|
260 |
gr.update(value=gallery_items),
|
261 |
selected_info_1,
|
262 |
selected_info_2,
|
|
|
263 |
selected_indices,
|
264 |
lora_scale_1,
|
265 |
lora_scale_2,
|
|
|
266 |
lora_image_1,
|
267 |
-
lora_image_2
|
|
|
268 |
)
|
269 |
except Exception as e:
|
270 |
print(e)
|
271 |
gr.Warning(str(e))
|
272 |
-
return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()
|
273 |
else:
|
274 |
-
return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()
|
275 |
|
276 |
def remove_custom_lora(selected_indices, current_loras):
|
277 |
if current_loras:
|
@@ -287,10 +291,13 @@ def remove_custom_lora(selected_indices, current_loras):
|
|
287 |
# Update selected_info and images
|
288 |
selected_info_1 = "Select a LoRA 1"
|
289 |
selected_info_2 = "Select a LoRA 2"
|
|
|
290 |
lora_scale_1 = 1.15
|
291 |
lora_scale_2 = 1.15
|
|
|
292 |
lora_image_1 = None
|
293 |
lora_image_2 = None
|
|
|
294 |
if len(selected_indices) >= 1:
|
295 |
lora1 = current_loras[selected_indices[0]]
|
296 |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
|
@@ -299,16 +306,23 @@ def remove_custom_lora(selected_indices, current_loras):
|
|
299 |
lora2 = current_loras[selected_indices[1]]
|
300 |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
|
301 |
lora_image_2 = lora2['image']
|
|
|
|
|
|
|
|
|
302 |
return (
|
303 |
current_loras,
|
304 |
gr.update(value=gallery_items),
|
305 |
selected_info_1,
|
306 |
selected_info_2,
|
|
|
307 |
selected_indices,
|
308 |
lora_scale_1,
|
309 |
lora_scale_2,
|
|
|
310 |
lora_image_1,
|
311 |
-
lora_image_2
|
|
|
312 |
)
|
313 |
|
314 |
@spaces.GPU(duration=75)
|
@@ -350,9 +364,9 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
350 |
).images[0]
|
351 |
return final_image
|
352 |
|
353 |
-
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
|
354 |
try:
|
355 |
-
# 한글 감지 및 번역
|
356 |
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
|
357 |
translated = translator(prompt, max_length=512)[0]['translation_text']
|
358 |
print(f"Original prompt: {prompt}")
|
@@ -364,7 +378,7 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
364 |
|
365 |
selected_loras = [loras_state[idx] for idx in selected_indices]
|
366 |
|
367 |
-
# Build the prompt with trigger words
|
368 |
prepends = []
|
369 |
appends = []
|
370 |
for lora in selected_loras:
|
@@ -382,41 +396,52 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
382 |
pipe.unload_lora_weights()
|
383 |
pipe_i2i.unload_lora_weights()
|
384 |
|
385 |
-
print(pipe.get_active_adapters())
|
|
|
386 |
# Load LoRA weights with respective scales
|
387 |
lora_names = []
|
388 |
lora_weights = []
|
389 |
with calculateDuration("Loading LoRA weights"):
|
390 |
for idx, lora in enumerate(selected_loras):
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
|
|
400 |
else:
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
|
|
|
|
|
|
407 |
print("Loaded LoRAs:", lora_names)
|
408 |
print("Adapter weights:", lora_weights)
|
409 |
-
|
410 |
-
|
|
|
|
|
|
|
|
|
411 |
else:
|
412 |
-
|
413 |
-
|
414 |
-
|
|
|
|
|
|
|
415 |
with calculateDuration("Randomizing seed"):
|
416 |
if randomize_seed:
|
417 |
seed = random.randint(0, MAX_SEED)
|
418 |
|
419 |
-
# Generate image
|
420 |
if image_input is not None:
|
421 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
422 |
else:
|
@@ -428,19 +453,16 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
428 |
final_image = image
|
429 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
430 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
431 |
-
|
432 |
-
|
433 |
|
434 |
if final_image is None:
|
435 |
raise Exception("Failed to generate image")
|
436 |
|
437 |
return final_image, seed, gr.update(visible=False)
|
|
|
438 |
except Exception as e:
|
439 |
print(f"Error in run_lora: {str(e)}")
|
440 |
return None, seed, gr.update(visible=False)
|
441 |
|
442 |
-
|
443 |
-
|
444 |
run_lora.zerogpu = True
|
445 |
|
446 |
def get_huggingface_safetensors(link):
|
@@ -524,119 +546,32 @@ css = '''
|
|
524 |
footer {visibility: hidden;}
|
525 |
'''
|
526 |
|
527 |
-
# 업스케일 관련 함수 추가
|
528 |
-
def process_input(input_image, upscale_factor, **kwargs):
|
529 |
-
w, h = input_image.size
|
530 |
-
w_original, h_original = w, h
|
531 |
-
aspect_ratio = w / h
|
532 |
-
|
533 |
-
was_resized = False
|
534 |
-
|
535 |
-
max_size = int(np.sqrt(MAX_PIXEL_BUDGET / (upscale_factor ** 2)))
|
536 |
-
if w > max_size or h > max_size:
|
537 |
-
if w > h:
|
538 |
-
w_new = max_size
|
539 |
-
h_new = int(w_new / aspect_ratio)
|
540 |
-
else:
|
541 |
-
h_new = max_size
|
542 |
-
w_new = int(h_new * aspect_ratio)
|
543 |
-
|
544 |
-
input_image = input_image.resize((w_new, h_new), Image.LANCZOS)
|
545 |
-
was_resized = True
|
546 |
-
gr.Info(f"Input image resized to {w_new}x{h_new} to fit within pixel budget after upscaling.")
|
547 |
-
|
548 |
-
# resize to multiple of 8
|
549 |
-
w, h = input_image.size
|
550 |
-
w = w - w % 8
|
551 |
-
h = h - h % 8
|
552 |
-
|
553 |
-
return input_image.resize((w, h)), w_original, h_original, was_resized
|
554 |
-
|
555 |
-
from PIL import Image
|
556 |
-
import numpy as np
|
557 |
-
|
558 |
-
@spaces.GPU
|
559 |
-
def infer_upscale(
|
560 |
-
seed,
|
561 |
-
randomize_seed,
|
562 |
-
input_image,
|
563 |
-
num_inference_steps,
|
564 |
-
upscale_factor,
|
565 |
-
controlnet_conditioning_scale,
|
566 |
-
progress=gr.Progress(track_tqdm=True),
|
567 |
-
):
|
568 |
-
if input_image is None:
|
569 |
-
return None, seed, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=True, value="Please upload an image for upscaling.")
|
570 |
-
|
571 |
-
try:
|
572 |
-
if randomize_seed:
|
573 |
-
seed = random.randint(0, MAX_SEED)
|
574 |
-
|
575 |
-
input_image, w_original, h_original, was_resized = process_input(input_image, upscale_factor)
|
576 |
-
|
577 |
-
# rescale with upscale factor
|
578 |
-
w, h = input_image.size
|
579 |
-
control_image = input_image.resize((w * upscale_factor, h * upscale_factor), Image.LANCZOS)
|
580 |
-
|
581 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
582 |
-
|
583 |
-
gr.Info("Upscaling image...")
|
584 |
-
# 모든 텐서를 동일한 디바이스로 이동
|
585 |
-
pipe_upscale.to(device)
|
586 |
-
|
587 |
-
# Ensure the image is in RGB format
|
588 |
-
if control_image.mode != 'RGB':
|
589 |
-
control_image = control_image.convert('RGB')
|
590 |
-
|
591 |
-
# Convert to tensor and add batch dimension
|
592 |
-
control_image = torch.from_numpy(np.array(control_image)).permute(2, 0, 1).float().unsqueeze(0).to(device) / 255.0
|
593 |
-
|
594 |
-
with torch.no_grad():
|
595 |
-
image = pipe_upscale(
|
596 |
-
prompt="",
|
597 |
-
control_image=control_image,
|
598 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
599 |
-
num_inference_steps=num_inference_steps,
|
600 |
-
guidance_scale=3.5,
|
601 |
-
generator=generator,
|
602 |
-
).images[0]
|
603 |
-
|
604 |
-
# Convert the image back to PIL Image
|
605 |
-
if isinstance(image, torch.Tensor):
|
606 |
-
image = image.cpu().permute(1, 2, 0).numpy()
|
607 |
-
|
608 |
-
# Ensure the image data is in the correct range
|
609 |
-
image = np.clip(image * 255, 0, 255).astype(np.uint8)
|
610 |
-
image = Image.fromarray(image)
|
611 |
-
|
612 |
-
if was_resized:
|
613 |
-
gr.Info(
|
614 |
-
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
615 |
-
)
|
616 |
-
image = image.resize((w_original * upscale_factor, h_original * upscale_factor), Image.LANCZOS)
|
617 |
-
|
618 |
-
return image, seed, num_inference_steps, upscale_factor, controlnet_conditioning_scale, gr.update(), gr.update(visible=False)
|
619 |
-
except Exception as e:
|
620 |
-
print(f"Error in infer_upscale: {str(e)}")
|
621 |
-
import traceback
|
622 |
-
traceback.print_exc()
|
623 |
-
return None, seed, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=True, value=f"Error: {str(e)}")
|
624 |
-
|
625 |
-
def check_upscale_input(input_image, *args):
|
626 |
-
if input_image is None:
|
627 |
-
return gr.update(interactive=False), *args, gr.update(visible=True, value="Please upload an image for upscaling.")
|
628 |
-
return gr.update(interactive=True), *args, gr.update(visible=False)
|
629 |
-
|
630 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
|
631 |
loras_state = gr.State(loras)
|
632 |
selected_indices = gr.State([])
|
633 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
634 |
with gr.Row():
|
635 |
with gr.Column(scale=3):
|
636 |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
637 |
with gr.Column(scale=1):
|
638 |
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
|
639 |
-
|
|
|
|
|
|
|
640 |
with gr.Row(elem_id="loaded_loras"):
|
641 |
with gr.Column(scale=1, min_width=25):
|
642 |
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
|
@@ -650,6 +585,7 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
650 |
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
651 |
with gr.Row():
|
652 |
remove_button_1 = gr.Button("Remove", size="sm")
|
|
|
653 |
with gr.Column(scale=8):
|
654 |
with gr.Row():
|
655 |
with gr.Column(scale=0, min_width=50):
|
@@ -660,6 +596,17 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
660 |
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
661 |
with gr.Row():
|
662 |
remove_button_2 = gr.Button("Remove", size="sm")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
663 |
|
664 |
with gr.Row():
|
665 |
with gr.Column():
|
@@ -698,85 +645,52 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
698 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
699 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
700 |
|
701 |
-
# 업스케일 관련 UI 추가
|
702 |
-
with gr.Row():
|
703 |
-
upscale_button = gr.Button("Upscale", interactive=False)
|
704 |
-
|
705 |
-
with gr.Row():
|
706 |
-
with gr.Column(scale=4):
|
707 |
-
upscale_input = gr.Image(label="Input Image for Upscaling", type="pil")
|
708 |
-
with gr.Column(scale=1):
|
709 |
-
upscale_steps = gr.Slider(
|
710 |
-
label="Number of Inference Steps for Upscaling",
|
711 |
-
minimum=8,
|
712 |
-
maximum=50,
|
713 |
-
step=1,
|
714 |
-
value=28,
|
715 |
-
)
|
716 |
-
upscale_factor = gr.Slider(
|
717 |
-
label="Upscale Factor",
|
718 |
-
minimum=1,
|
719 |
-
maximum=4,
|
720 |
-
step=1,
|
721 |
-
value=4,
|
722 |
-
)
|
723 |
-
controlnet_conditioning_scale = gr.Slider(
|
724 |
-
label="Controlnet Conditioning Scale",
|
725 |
-
minimum=0.1,
|
726 |
-
maximum=1.0,
|
727 |
-
step=0.05,
|
728 |
-
value=0.5, # 기본값을 0.5로 낮춤
|
729 |
-
)
|
730 |
-
upscale_seed = gr.Slider(
|
731 |
-
label="Seed for Upscaling",
|
732 |
-
minimum=0,
|
733 |
-
maximum=MAX_SEED,
|
734 |
-
step=1,
|
735 |
-
value=42,
|
736 |
-
)
|
737 |
-
upscale_randomize_seed = gr.Checkbox(label="Randomize seed for Upscaling", value=True)
|
738 |
-
upscale_error = gr.Markdown(visible=False, value="Please provide an input image for upscaling.")
|
739 |
-
|
740 |
-
with gr.Row():
|
741 |
-
upscale_result = gr.Image(label="Upscaled Image", type="pil")
|
742 |
-
upscale_seed_output = gr.Number(label="Seed Used", precision=0)
|
743 |
-
|
744 |
-
|
745 |
gallery.select(
|
746 |
update_selection,
|
747 |
inputs=[selected_indices, loras_state, width, height],
|
748 |
-
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2]
|
749 |
)
|
|
|
750 |
remove_button_1.click(
|
751 |
remove_lora_1,
|
752 |
inputs=[selected_indices, loras_state],
|
753 |
-
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
754 |
)
|
|
|
755 |
remove_button_2.click(
|
756 |
remove_lora_2,
|
757 |
inputs=[selected_indices, loras_state],
|
758 |
-
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
759 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
760 |
randomize_button.click(
|
761 |
randomize_loras,
|
762 |
inputs=[selected_indices, loras_state],
|
763 |
-
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, prompt]
|
764 |
)
|
|
|
765 |
add_custom_lora_button.click(
|
766 |
add_custom_lora,
|
767 |
inputs=[custom_lora, selected_indices, loras_state],
|
768 |
-
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
769 |
)
|
|
|
770 |
remove_custom_lora_button.click(
|
771 |
remove_custom_lora,
|
772 |
inputs=[selected_indices, loras_state],
|
773 |
-
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
774 |
)
|
775 |
|
776 |
gr.on(
|
777 |
triggers=[generate_button.click, prompt.submit],
|
778 |
fn=run_lora,
|
779 |
-
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
|
780 |
outputs=[result, seed, progress_bar]
|
781 |
).then(
|
782 |
fn=lambda x, history: update_history(x, history) if x is not None else history,
|
@@ -784,48 +698,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
784 |
outputs=history_gallery,
|
785 |
)
|
786 |
|
787 |
-
upscale_input.upload(
|
788 |
-
lambda x: gr.update(interactive=x is not None),
|
789 |
-
inputs=[upscale_input],
|
790 |
-
outputs=[upscale_button]
|
791 |
-
)
|
792 |
-
|
793 |
-
upscale_error = gr.Markdown(visible=False, value="")
|
794 |
-
|
795 |
-
upscale_button.click(
|
796 |
-
infer_upscale,
|
797 |
-
inputs=[
|
798 |
-
upscale_seed,
|
799 |
-
upscale_randomize_seed,
|
800 |
-
upscale_input,
|
801 |
-
upscale_steps,
|
802 |
-
upscale_factor,
|
803 |
-
controlnet_conditioning_scale,
|
804 |
-
],
|
805 |
-
outputs=[
|
806 |
-
upscale_result,
|
807 |
-
upscale_seed_output,
|
808 |
-
upscale_steps,
|
809 |
-
upscale_factor,
|
810 |
-
controlnet_conditioning_scale,
|
811 |
-
upscale_randomize_seed,
|
812 |
-
upscale_error
|
813 |
-
],
|
814 |
-
|
815 |
-
).then(
|
816 |
-
infer_upscale,
|
817 |
-
inputs=[
|
818 |
-
upscale_seed,
|
819 |
-
upscale_randomize_seed,
|
820 |
-
upscale_input,
|
821 |
-
upscale_steps,
|
822 |
-
upscale_factor,
|
823 |
-
controlnet_conditioning_scale,
|
824 |
-
],
|
825 |
-
outputs=[upscale_result, upscale_seed_output]
|
826 |
-
)
|
827 |
-
|
828 |
-
|
829 |
if __name__ == "__main__":
|
830 |
app.queue(max_size=20)
|
831 |
app.launch(debug=True)
|
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import spaces
|
8 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
|
|
9 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
from diffusers.utils import load_image
|
11 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
|
|
20 |
import warnings
|
21 |
|
22 |
|
23 |
+
huggingface_token = os.getenv("HF_TOKEN")
|
24 |
|
25 |
|
26 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
|
|
|
60 |
torch_dtype=dtype
|
61 |
).to(device)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
MAX_SEED = 2**32 - 1
|
64 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
65 |
|
|
|
100 |
file.write(response.content)
|
101 |
|
102 |
return filepath
|
103 |
+
|
104 |
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
|
105 |
selected_index = evt.index
|
106 |
selected_indices = selected_indices or []
|
107 |
if selected_index in selected_indices:
|
108 |
selected_indices.remove(selected_index)
|
109 |
else:
|
110 |
+
if len(selected_indices) < 3:
|
111 |
selected_indices.append(selected_index)
|
112 |
else:
|
113 |
+
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
|
114 |
+
return gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update()
|
115 |
|
116 |
+
selected_info_1 = "Select LoRA 1"
|
117 |
+
selected_info_2 = "Select LoRA 2"
|
118 |
+
selected_info_3 = "Select LoRA 3"
|
119 |
+
|
120 |
lora_scale_1 = 1.15
|
121 |
lora_scale_2 = 1.15
|
122 |
+
lora_scale_3 = 1.15
|
123 |
lora_image_1 = None
|
124 |
lora_image_2 = None
|
125 |
+
lora_image_3 = None
|
126 |
+
|
127 |
if len(selected_indices) >= 1:
|
128 |
lora1 = loras_state[selected_indices[0]]
|
129 |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
|
|
132 |
lora2 = loras_state[selected_indices[1]]
|
133 |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
134 |
lora_image_2 = lora2['image']
|
135 |
+
if len(selected_indices) >= 3:
|
136 |
+
lora3 = loras_state[selected_indices[2]]
|
137 |
+
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
|
138 |
+
lora_image_3 = lora3['image']
|
139 |
+
|
140 |
if selected_indices:
|
141 |
last_selected_lora = loras_state[selected_indices[-1]]
|
142 |
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
|
143 |
else:
|
144 |
new_placeholder = "Type a prompt after selecting a LoRA"
|
145 |
|
146 |
+
return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
def remove_lora(selected_indices, loras_state, index_to_remove):
|
149 |
+
if len(selected_indices) > index_to_remove:
|
150 |
+
selected_indices.pop(index_to_remove)
|
151 |
+
|
152 |
selected_info_1 = "Select LoRA 1"
|
153 |
selected_info_2 = "Select LoRA 2"
|
154 |
+
selected_info_3 = "Select LoRA 3"
|
155 |
lora_scale_1 = 1.15
|
156 |
lora_scale_2 = 1.15
|
157 |
+
lora_scale_3 = 1.15
|
158 |
lora_image_1 = None
|
159 |
lora_image_2 = None
|
160 |
+
lora_image_3 = None
|
161 |
+
|
162 |
+
for i, idx in enumerate(selected_indices):
|
163 |
+
lora = loras_state[idx]
|
164 |
+
if i == 0:
|
165 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora['title']}]({lora['repo']}) ✨"
|
166 |
+
lora_image_1 = lora['image']
|
167 |
+
elif i == 1:
|
168 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora['title']}]({lora['repo']}) ✨"
|
169 |
+
lora_image_2 = lora['image']
|
170 |
+
elif i == 2:
|
171 |
+
selected_info_3 = f"### LoRA 3 Selected: [{lora['title']}]({lora['repo']}) ✨"
|
172 |
+
lora_image_3 = lora['image']
|
173 |
+
|
174 |
+
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3
|
175 |
+
|
176 |
+
def remove_lora_1(selected_indices, loras_state):
|
177 |
+
return remove_lora(selected_indices, loras_state, 0)
|
178 |
+
|
179 |
+
def remove_lora_2(selected_indices, loras_state):
|
180 |
+
return remove_lora(selected_indices, loras_state, 1)
|
181 |
+
|
182 |
+
def remove_lora_3(selected_indices, loras_state):
|
183 |
+
return remove_lora(selected_indices, loras_state, 2)
|
184 |
|
185 |
def randomize_loras(selected_indices, loras_state):
|
186 |
try:
|
187 |
+
if len(loras_state) < 3:
|
188 |
raise gr.Error("Not enough LoRAs to randomize.")
|
189 |
+
selected_indices = random.sample(range(len(loras_state)), 3)
|
190 |
lora1 = loras_state[selected_indices[0]]
|
191 |
lora2 = loras_state[selected_indices[1]]
|
192 |
+
lora3 = loras_state[selected_indices[2]]
|
193 |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
194 |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
195 |
+
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
|
196 |
lora_scale_1 = 1.15
|
197 |
lora_scale_2 = 1.15
|
198 |
+
lora_scale_3 = 1.15
|
199 |
+
lora_image_1 = lora1.get('image', 'path/to/default/image.png')
|
200 |
+
lora_image_2 = lora2.get('image', 'path/to/default/image.png')
|
201 |
+
lora_image_3 = lora3.get('image', 'path/to/default/image.png')
|
202 |
random_prompt = random.choice(prompt_values)
|
203 |
+
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, random_prompt
|
204 |
except Exception as e:
|
205 |
print(f"Error in randomize_loras: {str(e)}")
|
206 |
+
return "Error", "Error", "Error", [], 1.15, 1.15, 1.15, 'path/to/default/image.png', 'path/to/default/image.png', 'path/to/default/image.png', ""
|
207 |
|
208 |
def add_custom_lora(custom_lora, selected_indices, current_loras):
|
209 |
if custom_lora:
|
|
|
228 |
# Update gallery
|
229 |
gallery_items = [(item["image"], item["title"]) for item in current_loras]
|
230 |
# Update selected_indices if there's room
|
231 |
+
if len(selected_indices) < 3:
|
232 |
selected_indices.append(existing_item_index)
|
233 |
else:
|
234 |
+
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
|
235 |
|
236 |
# Update selected_info and images
|
237 |
selected_info_1 = "Select a LoRA 1"
|
238 |
selected_info_2 = "Select a LoRA 2"
|
239 |
+
selected_info_3 = "Select a LoRA 3"
|
240 |
lora_scale_1 = 1.15
|
241 |
lora_scale_2 = 1.15
|
242 |
+
lora_scale_3 = 1.15
|
243 |
lora_image_1 = None
|
244 |
lora_image_2 = None
|
245 |
+
lora_image_3 = None
|
246 |
if len(selected_indices) >= 1:
|
247 |
lora1 = current_loras[selected_indices[0]]
|
248 |
selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨"
|
|
|
251 |
lora2 = current_loras[selected_indices[1]]
|
252 |
selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨"
|
253 |
lora_image_2 = lora2['image'] if lora2['image'] else None
|
254 |
+
if len(selected_indices) >= 3:
|
255 |
+
lora3 = current_loras[selected_indices[2]]
|
256 |
+
selected_info_3 = f"### LoRA 3 Selected: {lora3['title']} ✨"
|
257 |
+
lora_image_3 = lora3['image'] if lora3['image'] else None
|
258 |
print("Finished adding custom LoRA")
|
259 |
return (
|
260 |
current_loras,
|
261 |
gr.update(value=gallery_items),
|
262 |
selected_info_1,
|
263 |
selected_info_2,
|
264 |
+
selected_info_3,
|
265 |
selected_indices,
|
266 |
lora_scale_1,
|
267 |
lora_scale_2,
|
268 |
+
lora_scale_3,
|
269 |
lora_image_1,
|
270 |
+
lora_image_2,
|
271 |
+
lora_image_3
|
272 |
)
|
273 |
except Exception as e:
|
274 |
print(e)
|
275 |
gr.Warning(str(e))
|
276 |
+
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
277 |
else:
|
278 |
+
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
279 |
|
280 |
def remove_custom_lora(selected_indices, current_loras):
|
281 |
if current_loras:
|
|
|
291 |
# Update selected_info and images
|
292 |
selected_info_1 = "Select a LoRA 1"
|
293 |
selected_info_2 = "Select a LoRA 2"
|
294 |
+
selected_info_3 = "Select a LoRA 3"
|
295 |
lora_scale_1 = 1.15
|
296 |
lora_scale_2 = 1.15
|
297 |
+
lora_scale_3 = 1.15
|
298 |
lora_image_1 = None
|
299 |
lora_image_2 = None
|
300 |
+
lora_image_3 = None
|
301 |
if len(selected_indices) >= 1:
|
302 |
lora1 = current_loras[selected_indices[0]]
|
303 |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
|
|
|
306 |
lora2 = current_loras[selected_indices[1]]
|
307 |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
|
308 |
lora_image_2 = lora2['image']
|
309 |
+
if len(selected_indices) >= 3:
|
310 |
+
lora3 = current_loras[selected_indices[2]]
|
311 |
+
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨"
|
312 |
+
lora_image_3 = lora3['image']
|
313 |
return (
|
314 |
current_loras,
|
315 |
gr.update(value=gallery_items),
|
316 |
selected_info_1,
|
317 |
selected_info_2,
|
318 |
+
selected_info_3,
|
319 |
selected_indices,
|
320 |
lora_scale_1,
|
321 |
lora_scale_2,
|
322 |
+
lora_scale_3,
|
323 |
lora_image_1,
|
324 |
+
lora_image_2,
|
325 |
+
lora_image_3
|
326 |
)
|
327 |
|
328 |
@spaces.GPU(duration=75)
|
|
|
364 |
).images[0]
|
365 |
return final_image
|
366 |
|
367 |
+
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
|
368 |
try:
|
369 |
+
# 한글 감지 및 번역 (이 부분은 그대로 유지)
|
370 |
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
|
371 |
translated = translator(prompt, max_length=512)[0]['translation_text']
|
372 |
print(f"Original prompt: {prompt}")
|
|
|
378 |
|
379 |
selected_loras = [loras_state[idx] for idx in selected_indices]
|
380 |
|
381 |
+
# Build the prompt with trigger words (이 부분은 그대로 유지)
|
382 |
prepends = []
|
383 |
appends = []
|
384 |
for lora in selected_loras:
|
|
|
396 |
pipe.unload_lora_weights()
|
397 |
pipe_i2i.unload_lora_weights()
|
398 |
|
399 |
+
print(f"Active adapters before loading: {pipe.get_active_adapters()}")
|
400 |
+
|
401 |
# Load LoRA weights with respective scales
|
402 |
lora_names = []
|
403 |
lora_weights = []
|
404 |
with calculateDuration("Loading LoRA weights"):
|
405 |
for idx, lora in enumerate(selected_loras):
|
406 |
+
try:
|
407 |
+
lora_name = f"lora_{idx}"
|
408 |
+
lora_path = lora['repo']
|
409 |
+
weight_name = lora.get("weights")
|
410 |
+
print(f"Loading LoRA {lora_name} from {lora_path}")
|
411 |
+
if image_input is not None:
|
412 |
+
if weight_name:
|
413 |
+
pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=lora_name)
|
414 |
+
else:
|
415 |
+
pipe_i2i.load_lora_weights(lora_path, adapter_name=lora_name)
|
416 |
else:
|
417 |
+
if weight_name:
|
418 |
+
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=lora_name)
|
419 |
+
else:
|
420 |
+
pipe.load_lora_weights(lora_path, adapter_name=lora_name)
|
421 |
+
lora_names.append(lora_name)
|
422 |
+
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3)
|
423 |
+
except Exception as e:
|
424 |
+
print(f"Failed to load LoRA {lora_name}: {str(e)}")
|
425 |
+
|
426 |
print("Loaded LoRAs:", lora_names)
|
427 |
print("Adapter weights:", lora_weights)
|
428 |
+
|
429 |
+
if lora_names:
|
430 |
+
if image_input is not None:
|
431 |
+
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
|
432 |
+
else:
|
433 |
+
pipe.set_adapters(lora_names, adapter_weights=lora_weights)
|
434 |
else:
|
435 |
+
print("No LoRAs were successfully loaded.")
|
436 |
+
return None, seed, gr.update(visible=False)
|
437 |
+
|
438 |
+
print(f"Active adapters after loading: {pipe.get_active_adapters()}")
|
439 |
+
|
440 |
+
# 여기서부터 이미지 생성 로직 (이 부분은 그대로 유지)
|
441 |
with calculateDuration("Randomizing seed"):
|
442 |
if randomize_seed:
|
443 |
seed = random.randint(0, MAX_SEED)
|
444 |
|
|
|
445 |
if image_input is not None:
|
446 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
447 |
else:
|
|
|
453 |
final_image = image
|
454 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
455 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
|
|
|
|
456 |
|
457 |
if final_image is None:
|
458 |
raise Exception("Failed to generate image")
|
459 |
|
460 |
return final_image, seed, gr.update(visible=False)
|
461 |
+
|
462 |
except Exception as e:
|
463 |
print(f"Error in run_lora: {str(e)}")
|
464 |
return None, seed, gr.update(visible=False)
|
465 |
|
|
|
|
|
466 |
run_lora.zerogpu = True
|
467 |
|
468 |
def get_huggingface_safetensors(link):
|
|
|
546 |
footer {visibility: hidden;}
|
547 |
'''
|
548 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
549 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
|
550 |
loras_state = gr.State(loras)
|
551 |
selected_indices = gr.State([])
|
552 |
|
553 |
+
gr.Markdown(
|
554 |
+
"""
|
555 |
+
# MixGen3: 멀티 Lora(이미지 학습) 통합 생성 모델
|
556 |
+
|
557 |
+
### 사용 안내:
|
558 |
+
1) 갤러리에서 원하는 모델을 선택(최대 3개까지)
|
559 |
+
2) 프롬프트에 한글 또는 영문으로 원하는 내용을 입력
|
560 |
+
3) Generate 버튼 실행
|
561 |
+
|
562 |
+
### Contacts: arxivgpt@gmail.com
|
563 |
+
"""
|
564 |
+
)
|
565 |
+
|
566 |
with gr.Row():
|
567 |
with gr.Column(scale=3):
|
568 |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
569 |
with gr.Column(scale=1):
|
570 |
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
|
571 |
+
|
572 |
+
|
573 |
+
|
574 |
+
|
575 |
with gr.Row(elem_id="loaded_loras"):
|
576 |
with gr.Column(scale=1, min_width=25):
|
577 |
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
|
|
|
585 |
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
586 |
with gr.Row():
|
587 |
remove_button_1 = gr.Button("Remove", size="sm")
|
588 |
+
|
589 |
with gr.Column(scale=8):
|
590 |
with gr.Row():
|
591 |
with gr.Column(scale=0, min_width=50):
|
|
|
596 |
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
597 |
with gr.Row():
|
598 |
remove_button_2 = gr.Button("Remove", size="sm")
|
599 |
+
|
600 |
+
with gr.Column(scale=8):
|
601 |
+
with gr.Row():
|
602 |
+
with gr.Column(scale=0, min_width=50):
|
603 |
+
lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
604 |
+
with gr.Column(scale=3, min_width=100):
|
605 |
+
selected_info_3 = gr.Markdown("Select a LoRA 3")
|
606 |
+
with gr.Column(scale=5, min_width=50):
|
607 |
+
lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
608 |
+
with gr.Row():
|
609 |
+
remove_button_3 = gr.Button("Remove", size="sm")
|
610 |
|
611 |
with gr.Row():
|
612 |
with gr.Column():
|
|
|
645 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
646 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
647 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
648 |
gallery.select(
|
649 |
update_selection,
|
650 |
inputs=[selected_indices, loras_state, width, height],
|
651 |
+
outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3]
|
652 |
)
|
653 |
+
|
654 |
remove_button_1.click(
|
655 |
remove_lora_1,
|
656 |
inputs=[selected_indices, loras_state],
|
657 |
+
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
|
658 |
)
|
659 |
+
|
660 |
remove_button_2.click(
|
661 |
remove_lora_2,
|
662 |
inputs=[selected_indices, loras_state],
|
663 |
+
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
|
664 |
)
|
665 |
+
|
666 |
+
remove_button_3.click(
|
667 |
+
remove_lora_3,
|
668 |
+
inputs=[selected_indices, loras_state],
|
669 |
+
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
|
670 |
+
)
|
671 |
+
|
672 |
randomize_button.click(
|
673 |
randomize_loras,
|
674 |
inputs=[selected_indices, loras_state],
|
675 |
+
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, prompt]
|
676 |
)
|
677 |
+
|
678 |
add_custom_lora_button.click(
|
679 |
add_custom_lora,
|
680 |
inputs=[custom_lora, selected_indices, loras_state],
|
681 |
+
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
|
682 |
)
|
683 |
+
|
684 |
remove_custom_lora_button.click(
|
685 |
remove_custom_lora,
|
686 |
inputs=[selected_indices, loras_state],
|
687 |
+
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
|
688 |
)
|
689 |
|
690 |
gr.on(
|
691 |
triggers=[generate_button.click, prompt.submit],
|
692 |
fn=run_lora,
|
693 |
+
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, width, height, loras_state],
|
694 |
outputs=[result, seed, progress_bar]
|
695 |
).then(
|
696 |
fn=lambda x, history: update_history(x, history) if x is not None else history,
|
|
|
698 |
outputs=history_gallery,
|
699 |
)
|
700 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
701 |
if __name__ == "__main__":
|
702 |
app.queue(max_size=20)
|
703 |
app.launch(debug=True)
|