openfree commited on
Commit
d83fb53
1 Parent(s): 980c3b6

Update app-backup.py

Browse files
Files changed (1) hide show
  1. app-backup.py +169 -297
app-backup.py CHANGED
@@ -5,8 +5,7 @@ import logging
5
  import torch
6
  from PIL import Image
7
  import spaces
8
- from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image, FluxControlNetModel
9
- from diffusers.pipelines import FluxControlNetPipeline
10
  from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
11
  from diffusers.utils import load_image
12
  from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
@@ -21,7 +20,7 @@ import numpy as np
21
  import warnings
22
 
23
 
24
- huggingface_token = os.getenv("HUGGINFACE_TOKEN")
25
 
26
 
27
  translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
@@ -61,23 +60,6 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
61
  torch_dtype=dtype
62
  ).to(device)
63
 
64
- # Upscale을 위한 ControlNet 설정
65
- controlnet = FluxControlNetModel.from_pretrained(
66
- "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
67
- ).to(device)
68
-
69
- # Upscale 파이프라인 설정 (기존 pipe 재사용)
70
- pipe_upscale = FluxControlNetPipeline(
71
- vae=pipe.vae,
72
- text_encoder=pipe.text_encoder,
73
- text_encoder_2=pipe.text_encoder_2,
74
- tokenizer=pipe.tokenizer,
75
- tokenizer_2=pipe.tokenizer_2,
76
- transformer=pipe.transformer,
77
- scheduler=pipe.scheduler,
78
- controlnet=controlnet
79
- ).to(device)
80
-
81
  MAX_SEED = 2**32 - 1
82
  MAX_PIXEL_BUDGET = 1024 * 1024
83
 
@@ -118,25 +100,30 @@ def download_file(url, directory=None):
118
  file.write(response.content)
119
 
120
  return filepath
121
-
122
  def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
123
  selected_index = evt.index
124
  selected_indices = selected_indices or []
125
  if selected_index in selected_indices:
126
  selected_indices.remove(selected_index)
127
  else:
128
- if len(selected_indices) < 2:
129
  selected_indices.append(selected_index)
130
  else:
131
- gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")
132
- return gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), width, height, gr.update(), gr.update()
133
 
134
- selected_info_1 = "Select a LoRA 1"
135
- selected_info_2 = "Select a LoRA 2"
 
 
136
  lora_scale_1 = 1.15
137
  lora_scale_2 = 1.15
 
138
  lora_image_1 = None
139
  lora_image_2 = None
 
 
140
  if len(selected_indices) >= 1:
141
  lora1 = loras_state[selected_indices[0]]
142
  selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
@@ -145,71 +132,78 @@ def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, h
145
  lora2 = loras_state[selected_indices[1]]
146
  selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
147
  lora_image_2 = lora2['image']
148
-
 
 
 
 
149
  if selected_indices:
150
  last_selected_lora = loras_state[selected_indices[-1]]
151
  new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
152
  else:
153
  new_placeholder = "Type a prompt after selecting a LoRA"
154
 
155
- return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2
156
-
157
- def remove_lora_1(selected_indices, loras_state):
158
- if len(selected_indices) >= 1:
159
- selected_indices.pop(0)
160
- selected_info_1 = "Select a LoRA 1"
161
- selected_info_2 = "Select a LoRA 2"
162
- lora_scale_1 = 1.15
163
- lora_scale_2 = 1.15
164
- lora_image_1 = None
165
- lora_image_2 = None
166
- if len(selected_indices) >= 1:
167
- lora1 = loras_state[selected_indices[0]]
168
- selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
169
- lora_image_1 = lora1['image']
170
- if len(selected_indices) >= 2:
171
- lora2 = loras_state[selected_indices[1]]
172
- selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
173
- lora_image_2 = lora2['image']
174
- return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
175
 
176
- def remove_lora_2(selected_indices, loras_state):
177
- if len(selected_indices) >= 2:
178
- selected_indices.pop(1)
 
179
  selected_info_1 = "Select LoRA 1"
180
  selected_info_2 = "Select LoRA 2"
 
181
  lora_scale_1 = 1.15
182
  lora_scale_2 = 1.15
 
183
  lora_image_1 = None
184
  lora_image_2 = None
185
- if len(selected_indices) >= 1:
186
- lora1 = loras_state[selected_indices[0]]
187
- selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
188
- lora_image_1 = lora1['image']
189
- if len(selected_indices) >= 2:
190
- lora2 = loras_state[selected_indices[1]]
191
- selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
192
- lora_image_2 = lora2['image']
193
- return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194
 
195
  def randomize_loras(selected_indices, loras_state):
196
  try:
197
- if len(loras_state) < 2:
198
  raise gr.Error("Not enough LoRAs to randomize.")
199
- selected_indices = random.sample(range(len(loras_state)), 2)
200
  lora1 = loras_state[selected_indices[0]]
201
  lora2 = loras_state[selected_indices[1]]
 
202
  selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
203
  selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
 
204
  lora_scale_1 = 1.15
205
  lora_scale_2 = 1.15
206
- lora_image_1 = lora1['image']
207
- lora_image_2 = lora2['image']
 
 
208
  random_prompt = random.choice(prompt_values)
209
- return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, random_prompt
210
  except Exception as e:
211
  print(f"Error in randomize_loras: {str(e)}")
212
- return "Error", "Error", [], 1.15, 1.15, None, None, ""
213
 
214
  def add_custom_lora(custom_lora, selected_indices, current_loras):
215
  if custom_lora:
@@ -234,18 +228,21 @@ def add_custom_lora(custom_lora, selected_indices, current_loras):
234
  # Update gallery
235
  gallery_items = [(item["image"], item["title"]) for item in current_loras]
236
  # Update selected_indices if there's room
237
- if len(selected_indices) < 2:
238
  selected_indices.append(existing_item_index)
239
  else:
240
- gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")
241
 
242
  # Update selected_info and images
243
  selected_info_1 = "Select a LoRA 1"
244
  selected_info_2 = "Select a LoRA 2"
 
245
  lora_scale_1 = 1.15
246
  lora_scale_2 = 1.15
 
247
  lora_image_1 = None
248
  lora_image_2 = None
 
249
  if len(selected_indices) >= 1:
250
  lora1 = current_loras[selected_indices[0]]
251
  selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨"
@@ -254,24 +251,31 @@ def add_custom_lora(custom_lora, selected_indices, current_loras):
254
  lora2 = current_loras[selected_indices[1]]
255
  selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨"
256
  lora_image_2 = lora2['image'] if lora2['image'] else None
 
 
 
 
257
  print("Finished adding custom LoRA")
258
  return (
259
  current_loras,
260
  gr.update(value=gallery_items),
261
  selected_info_1,
262
  selected_info_2,
 
263
  selected_indices,
264
  lora_scale_1,
265
  lora_scale_2,
 
266
  lora_image_1,
267
- lora_image_2
 
268
  )
269
  except Exception as e:
270
  print(e)
271
  gr.Warning(str(e))
272
- return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()
273
  else:
274
- return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()
275
 
276
  def remove_custom_lora(selected_indices, current_loras):
277
  if current_loras:
@@ -287,10 +291,13 @@ def remove_custom_lora(selected_indices, current_loras):
287
  # Update selected_info and images
288
  selected_info_1 = "Select a LoRA 1"
289
  selected_info_2 = "Select a LoRA 2"
 
290
  lora_scale_1 = 1.15
291
  lora_scale_2 = 1.15
 
292
  lora_image_1 = None
293
  lora_image_2 = None
 
294
  if len(selected_indices) >= 1:
295
  lora1 = current_loras[selected_indices[0]]
296
  selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
@@ -299,16 +306,23 @@ def remove_custom_lora(selected_indices, current_loras):
299
  lora2 = current_loras[selected_indices[1]]
300
  selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
301
  lora_image_2 = lora2['image']
 
 
 
 
302
  return (
303
  current_loras,
304
  gr.update(value=gallery_items),
305
  selected_info_1,
306
  selected_info_2,
 
307
  selected_indices,
308
  lora_scale_1,
309
  lora_scale_2,
 
310
  lora_image_1,
311
- lora_image_2
 
312
  )
313
 
314
  @spaces.GPU(duration=75)
@@ -350,9 +364,9 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
350
  ).images[0]
351
  return final_image
352
 
353
- def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
354
  try:
355
- # 한글 감지 및 번역
356
  if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
357
  translated = translator(prompt, max_length=512)[0]['translation_text']
358
  print(f"Original prompt: {prompt}")
@@ -364,7 +378,7 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
364
 
365
  selected_loras = [loras_state[idx] for idx in selected_indices]
366
 
367
- # Build the prompt with trigger words
368
  prepends = []
369
  appends = []
370
  for lora in selected_loras:
@@ -382,41 +396,52 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
382
  pipe.unload_lora_weights()
383
  pipe_i2i.unload_lora_weights()
384
 
385
- print(pipe.get_active_adapters())
 
386
  # Load LoRA weights with respective scales
387
  lora_names = []
388
  lora_weights = []
389
  with calculateDuration("Loading LoRA weights"):
390
  for idx, lora in enumerate(selected_loras):
391
- lora_name = f"lora_{idx}"
392
- lora_names.append(lora_name)
393
- lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2)
394
- lora_path = lora['repo']
395
- weight_name = lora.get("weights")
396
- print(f"Lora Path: {lora_path}")
397
- if image_input is not None:
398
- if weight_name:
399
- pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name)
 
400
  else:
401
- pipe_i2i.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
402
- else:
403
- if weight_name:
404
- pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name)
405
- else:
406
- pipe.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
 
 
 
407
  print("Loaded LoRAs:", lora_names)
408
  print("Adapter weights:", lora_weights)
409
- if image_input is not None:
410
- pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
 
 
 
 
411
  else:
412
- pipe.set_adapters(lora_names, adapter_weights=lora_weights)
413
- print(pipe.get_active_adapters())
414
- # Set random seed for reproducibility
 
 
 
415
  with calculateDuration("Randomizing seed"):
416
  if randomize_seed:
417
  seed = random.randint(0, MAX_SEED)
418
 
419
- # Generate image
420
  if image_input is not None:
421
  final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
422
  else:
@@ -428,19 +453,16 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
428
  final_image = image
429
  progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
430
  yield image, seed, gr.update(value=progress_bar, visible=True)
431
-
432
-
433
 
434
  if final_image is None:
435
  raise Exception("Failed to generate image")
436
 
437
  return final_image, seed, gr.update(visible=False)
 
438
  except Exception as e:
439
  print(f"Error in run_lora: {str(e)}")
440
  return None, seed, gr.update(visible=False)
441
 
442
-
443
-
444
  run_lora.zerogpu = True
445
 
446
  def get_huggingface_safetensors(link):
@@ -524,119 +546,32 @@ css = '''
524
  footer {visibility: hidden;}
525
  '''
526
 
527
- # 업스케일 관련 함수 추가
528
- def process_input(input_image, upscale_factor, **kwargs):
529
- w, h = input_image.size
530
- w_original, h_original = w, h
531
- aspect_ratio = w / h
532
-
533
- was_resized = False
534
-
535
- max_size = int(np.sqrt(MAX_PIXEL_BUDGET / (upscale_factor ** 2)))
536
- if w > max_size or h > max_size:
537
- if w > h:
538
- w_new = max_size
539
- h_new = int(w_new / aspect_ratio)
540
- else:
541
- h_new = max_size
542
- w_new = int(h_new * aspect_ratio)
543
-
544
- input_image = input_image.resize((w_new, h_new), Image.LANCZOS)
545
- was_resized = True
546
- gr.Info(f"Input image resized to {w_new}x{h_new} to fit within pixel budget after upscaling.")
547
-
548
- # resize to multiple of 8
549
- w, h = input_image.size
550
- w = w - w % 8
551
- h = h - h % 8
552
-
553
- return input_image.resize((w, h)), w_original, h_original, was_resized
554
-
555
- from PIL import Image
556
- import numpy as np
557
-
558
- @spaces.GPU
559
- def infer_upscale(
560
- seed,
561
- randomize_seed,
562
- input_image,
563
- num_inference_steps,
564
- upscale_factor,
565
- controlnet_conditioning_scale,
566
- progress=gr.Progress(track_tqdm=True),
567
- ):
568
- if input_image is None:
569
- return None, seed, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=True, value="Please upload an image for upscaling.")
570
-
571
- try:
572
- if randomize_seed:
573
- seed = random.randint(0, MAX_SEED)
574
-
575
- input_image, w_original, h_original, was_resized = process_input(input_image, upscale_factor)
576
-
577
- # rescale with upscale factor
578
- w, h = input_image.size
579
- control_image = input_image.resize((w * upscale_factor, h * upscale_factor), Image.LANCZOS)
580
-
581
- generator = torch.Generator(device=device).manual_seed(seed)
582
-
583
- gr.Info("Upscaling image...")
584
- # 모든 텐서를 동일한 디바이스로 이동
585
- pipe_upscale.to(device)
586
-
587
- # Ensure the image is in RGB format
588
- if control_image.mode != 'RGB':
589
- control_image = control_image.convert('RGB')
590
-
591
- # Convert to tensor and add batch dimension
592
- control_image = torch.from_numpy(np.array(control_image)).permute(2, 0, 1).float().unsqueeze(0).to(device) / 255.0
593
-
594
- with torch.no_grad():
595
- image = pipe_upscale(
596
- prompt="",
597
- control_image=control_image,
598
- controlnet_conditioning_scale=controlnet_conditioning_scale,
599
- num_inference_steps=num_inference_steps,
600
- guidance_scale=3.5,
601
- generator=generator,
602
- ).images[0]
603
-
604
- # Convert the image back to PIL Image
605
- if isinstance(image, torch.Tensor):
606
- image = image.cpu().permute(1, 2, 0).numpy()
607
-
608
- # Ensure the image data is in the correct range
609
- image = np.clip(image * 255, 0, 255).astype(np.uint8)
610
- image = Image.fromarray(image)
611
-
612
- if was_resized:
613
- gr.Info(
614
- f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
615
- )
616
- image = image.resize((w_original * upscale_factor, h_original * upscale_factor), Image.LANCZOS)
617
-
618
- return image, seed, num_inference_steps, upscale_factor, controlnet_conditioning_scale, gr.update(), gr.update(visible=False)
619
- except Exception as e:
620
- print(f"Error in infer_upscale: {str(e)}")
621
- import traceback
622
- traceback.print_exc()
623
- return None, seed, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=True, value=f"Error: {str(e)}")
624
-
625
- def check_upscale_input(input_image, *args):
626
- if input_image is None:
627
- return gr.update(interactive=False), *args, gr.update(visible=True, value="Please upload an image for upscaling.")
628
- return gr.update(interactive=True), *args, gr.update(visible=False)
629
-
630
  with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
631
  loras_state = gr.State(loras)
632
  selected_indices = gr.State([])
633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634
  with gr.Row():
635
  with gr.Column(scale=3):
636
  prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
637
  with gr.Column(scale=1):
638
  generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
639
-
 
 
 
640
  with gr.Row(elem_id="loaded_loras"):
641
  with gr.Column(scale=1, min_width=25):
642
  randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
@@ -650,6 +585,7 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
650
  lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
651
  with gr.Row():
652
  remove_button_1 = gr.Button("Remove", size="sm")
 
653
  with gr.Column(scale=8):
654
  with gr.Row():
655
  with gr.Column(scale=0, min_width=50):
@@ -660,6 +596,17 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
660
  lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
661
  with gr.Row():
662
  remove_button_2 = gr.Button("Remove", size="sm")
 
 
 
 
 
 
 
 
 
 
 
663
 
664
  with gr.Row():
665
  with gr.Column():
@@ -698,85 +645,52 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
698
  randomize_seed = gr.Checkbox(True, label="Randomize seed")
699
  seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
700
 
701
- # 업스케일 관련 UI 추가
702
- with gr.Row():
703
- upscale_button = gr.Button("Upscale", interactive=False)
704
-
705
- with gr.Row():
706
- with gr.Column(scale=4):
707
- upscale_input = gr.Image(label="Input Image for Upscaling", type="pil")
708
- with gr.Column(scale=1):
709
- upscale_steps = gr.Slider(
710
- label="Number of Inference Steps for Upscaling",
711
- minimum=8,
712
- maximum=50,
713
- step=1,
714
- value=28,
715
- )
716
- upscale_factor = gr.Slider(
717
- label="Upscale Factor",
718
- minimum=1,
719
- maximum=4,
720
- step=1,
721
- value=4,
722
- )
723
- controlnet_conditioning_scale = gr.Slider(
724
- label="Controlnet Conditioning Scale",
725
- minimum=0.1,
726
- maximum=1.0,
727
- step=0.05,
728
- value=0.5, # 기본값을 0.5로 낮춤
729
- )
730
- upscale_seed = gr.Slider(
731
- label="Seed for Upscaling",
732
- minimum=0,
733
- maximum=MAX_SEED,
734
- step=1,
735
- value=42,
736
- )
737
- upscale_randomize_seed = gr.Checkbox(label="Randomize seed for Upscaling", value=True)
738
- upscale_error = gr.Markdown(visible=False, value="Please provide an input image for upscaling.")
739
-
740
- with gr.Row():
741
- upscale_result = gr.Image(label="Upscaled Image", type="pil")
742
- upscale_seed_output = gr.Number(label="Seed Used", precision=0)
743
-
744
-
745
  gallery.select(
746
  update_selection,
747
  inputs=[selected_indices, loras_state, width, height],
748
- outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2]
749
  )
 
750
  remove_button_1.click(
751
  remove_lora_1,
752
  inputs=[selected_indices, loras_state],
753
- outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
754
  )
 
755
  remove_button_2.click(
756
  remove_lora_2,
757
  inputs=[selected_indices, loras_state],
758
- outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
759
  )
 
 
 
 
 
 
 
760
  randomize_button.click(
761
  randomize_loras,
762
  inputs=[selected_indices, loras_state],
763
- outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, prompt]
764
  )
 
765
  add_custom_lora_button.click(
766
  add_custom_lora,
767
  inputs=[custom_lora, selected_indices, loras_state],
768
- outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
769
  )
 
770
  remove_custom_lora_button.click(
771
  remove_custom_lora,
772
  inputs=[selected_indices, loras_state],
773
- outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
774
  )
775
 
776
  gr.on(
777
  triggers=[generate_button.click, prompt.submit],
778
  fn=run_lora,
779
- inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
780
  outputs=[result, seed, progress_bar]
781
  ).then(
782
  fn=lambda x, history: update_history(x, history) if x is not None else history,
@@ -784,48 +698,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
784
  outputs=history_gallery,
785
  )
786
 
787
- upscale_input.upload(
788
- lambda x: gr.update(interactive=x is not None),
789
- inputs=[upscale_input],
790
- outputs=[upscale_button]
791
- )
792
-
793
- upscale_error = gr.Markdown(visible=False, value="")
794
-
795
- upscale_button.click(
796
- infer_upscale,
797
- inputs=[
798
- upscale_seed,
799
- upscale_randomize_seed,
800
- upscale_input,
801
- upscale_steps,
802
- upscale_factor,
803
- controlnet_conditioning_scale,
804
- ],
805
- outputs=[
806
- upscale_result,
807
- upscale_seed_output,
808
- upscale_steps,
809
- upscale_factor,
810
- controlnet_conditioning_scale,
811
- upscale_randomize_seed,
812
- upscale_error
813
- ],
814
-
815
- ).then(
816
- infer_upscale,
817
- inputs=[
818
- upscale_seed,
819
- upscale_randomize_seed,
820
- upscale_input,
821
- upscale_steps,
822
- upscale_factor,
823
- controlnet_conditioning_scale,
824
- ],
825
- outputs=[upscale_result, upscale_seed_output]
826
- )
827
-
828
-
829
  if __name__ == "__main__":
830
  app.queue(max_size=20)
831
  app.launch(debug=True)
 
5
  import torch
6
  from PIL import Image
7
  import spaces
8
+ from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
 
9
  from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
10
  from diffusers.utils import load_image
11
  from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
 
20
  import warnings
21
 
22
 
23
+ huggingface_token = os.getenv("HF_TOKEN")
24
 
25
 
26
  translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
 
60
  torch_dtype=dtype
61
  ).to(device)
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  MAX_SEED = 2**32 - 1
64
  MAX_PIXEL_BUDGET = 1024 * 1024
65
 
 
100
  file.write(response.content)
101
 
102
  return filepath
103
+
104
  def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
105
  selected_index = evt.index
106
  selected_indices = selected_indices or []
107
  if selected_index in selected_indices:
108
  selected_indices.remove(selected_index)
109
  else:
110
+ if len(selected_indices) < 3:
111
  selected_indices.append(selected_index)
112
  else:
113
+ gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
114
+ return gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update()
115
 
116
+ selected_info_1 = "Select LoRA 1"
117
+ selected_info_2 = "Select LoRA 2"
118
+ selected_info_3 = "Select LoRA 3"
119
+
120
  lora_scale_1 = 1.15
121
  lora_scale_2 = 1.15
122
+ lora_scale_3 = 1.15
123
  lora_image_1 = None
124
  lora_image_2 = None
125
+ lora_image_3 = None
126
+
127
  if len(selected_indices) >= 1:
128
  lora1 = loras_state[selected_indices[0]]
129
  selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
 
132
  lora2 = loras_state[selected_indices[1]]
133
  selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
134
  lora_image_2 = lora2['image']
135
+ if len(selected_indices) >= 3:
136
+ lora3 = loras_state[selected_indices[2]]
137
+ selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
138
+ lora_image_3 = lora3['image']
139
+
140
  if selected_indices:
141
  last_selected_lora = loras_state[selected_indices[-1]]
142
  new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
143
  else:
144
  new_placeholder = "Type a prompt after selecting a LoRA"
145
 
146
+ return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
 
148
+ def remove_lora(selected_indices, loras_state, index_to_remove):
149
+ if len(selected_indices) > index_to_remove:
150
+ selected_indices.pop(index_to_remove)
151
+
152
  selected_info_1 = "Select LoRA 1"
153
  selected_info_2 = "Select LoRA 2"
154
+ selected_info_3 = "Select LoRA 3"
155
  lora_scale_1 = 1.15
156
  lora_scale_2 = 1.15
157
+ lora_scale_3 = 1.15
158
  lora_image_1 = None
159
  lora_image_2 = None
160
+ lora_image_3 = None
161
+
162
+ for i, idx in enumerate(selected_indices):
163
+ lora = loras_state[idx]
164
+ if i == 0:
165
+ selected_info_1 = f"### LoRA 1 Selected: [{lora['title']}]({lora['repo']}) ✨"
166
+ lora_image_1 = lora['image']
167
+ elif i == 1:
168
+ selected_info_2 = f"### LoRA 2 Selected: [{lora['title']}]({lora['repo']}) ✨"
169
+ lora_image_2 = lora['image']
170
+ elif i == 2:
171
+ selected_info_3 = f"### LoRA 3 Selected: [{lora['title']}]({lora['repo']}) ✨"
172
+ lora_image_3 = lora['image']
173
+
174
+ return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3
175
+
176
+ def remove_lora_1(selected_indices, loras_state):
177
+ return remove_lora(selected_indices, loras_state, 0)
178
+
179
+ def remove_lora_2(selected_indices, loras_state):
180
+ return remove_lora(selected_indices, loras_state, 1)
181
+
182
+ def remove_lora_3(selected_indices, loras_state):
183
+ return remove_lora(selected_indices, loras_state, 2)
184
 
185
  def randomize_loras(selected_indices, loras_state):
186
  try:
187
+ if len(loras_state) < 3:
188
  raise gr.Error("Not enough LoRAs to randomize.")
189
+ selected_indices = random.sample(range(len(loras_state)), 3)
190
  lora1 = loras_state[selected_indices[0]]
191
  lora2 = loras_state[selected_indices[1]]
192
+ lora3 = loras_state[selected_indices[2]]
193
  selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
194
  selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
195
+ selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
196
  lora_scale_1 = 1.15
197
  lora_scale_2 = 1.15
198
+ lora_scale_3 = 1.15
199
+ lora_image_1 = lora1.get('image', 'path/to/default/image.png')
200
+ lora_image_2 = lora2.get('image', 'path/to/default/image.png')
201
+ lora_image_3 = lora3.get('image', 'path/to/default/image.png')
202
  random_prompt = random.choice(prompt_values)
203
+ return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, random_prompt
204
  except Exception as e:
205
  print(f"Error in randomize_loras: {str(e)}")
206
+ return "Error", "Error", "Error", [], 1.15, 1.15, 1.15, 'path/to/default/image.png', 'path/to/default/image.png', 'path/to/default/image.png', ""
207
 
208
  def add_custom_lora(custom_lora, selected_indices, current_loras):
209
  if custom_lora:
 
228
  # Update gallery
229
  gallery_items = [(item["image"], item["title"]) for item in current_loras]
230
  # Update selected_indices if there's room
231
+ if len(selected_indices) < 3:
232
  selected_indices.append(existing_item_index)
233
  else:
234
+ gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
235
 
236
  # Update selected_info and images
237
  selected_info_1 = "Select a LoRA 1"
238
  selected_info_2 = "Select a LoRA 2"
239
+ selected_info_3 = "Select a LoRA 3"
240
  lora_scale_1 = 1.15
241
  lora_scale_2 = 1.15
242
+ lora_scale_3 = 1.15
243
  lora_image_1 = None
244
  lora_image_2 = None
245
+ lora_image_3 = None
246
  if len(selected_indices) >= 1:
247
  lora1 = current_loras[selected_indices[0]]
248
  selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨"
 
251
  lora2 = current_loras[selected_indices[1]]
252
  selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨"
253
  lora_image_2 = lora2['image'] if lora2['image'] else None
254
+ if len(selected_indices) >= 3:
255
+ lora3 = current_loras[selected_indices[2]]
256
+ selected_info_3 = f"### LoRA 3 Selected: {lora3['title']} ✨"
257
+ lora_image_3 = lora3['image'] if lora3['image'] else None
258
  print("Finished adding custom LoRA")
259
  return (
260
  current_loras,
261
  gr.update(value=gallery_items),
262
  selected_info_1,
263
  selected_info_2,
264
+ selected_info_3,
265
  selected_indices,
266
  lora_scale_1,
267
  lora_scale_2,
268
+ lora_scale_3,
269
  lora_image_1,
270
+ lora_image_2,
271
+ lora_image_3
272
  )
273
  except Exception as e:
274
  print(e)
275
  gr.Warning(str(e))
276
+ return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
277
  else:
278
+ return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
279
 
280
  def remove_custom_lora(selected_indices, current_loras):
281
  if current_loras:
 
291
  # Update selected_info and images
292
  selected_info_1 = "Select a LoRA 1"
293
  selected_info_2 = "Select a LoRA 2"
294
+ selected_info_3 = "Select a LoRA 3"
295
  lora_scale_1 = 1.15
296
  lora_scale_2 = 1.15
297
+ lora_scale_3 = 1.15
298
  lora_image_1 = None
299
  lora_image_2 = None
300
+ lora_image_3 = None
301
  if len(selected_indices) >= 1:
302
  lora1 = current_loras[selected_indices[0]]
303
  selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
 
306
  lora2 = current_loras[selected_indices[1]]
307
  selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
308
  lora_image_2 = lora2['image']
309
+ if len(selected_indices) >= 3:
310
+ lora3 = current_loras[selected_indices[2]]
311
+ selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨"
312
+ lora_image_3 = lora3['image']
313
  return (
314
  current_loras,
315
  gr.update(value=gallery_items),
316
  selected_info_1,
317
  selected_info_2,
318
+ selected_info_3,
319
  selected_indices,
320
  lora_scale_1,
321
  lora_scale_2,
322
+ lora_scale_3,
323
  lora_image_1,
324
+ lora_image_2,
325
+ lora_image_3
326
  )
327
 
328
  @spaces.GPU(duration=75)
 
364
  ).images[0]
365
  return final_image
366
 
367
+ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
368
  try:
369
+ # 한글 감지 및 번역 (이 부분은 그대로 유지)
370
  if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
371
  translated = translator(prompt, max_length=512)[0]['translation_text']
372
  print(f"Original prompt: {prompt}")
 
378
 
379
  selected_loras = [loras_state[idx] for idx in selected_indices]
380
 
381
+ # Build the prompt with trigger words (이 부분은 그대로 유지)
382
  prepends = []
383
  appends = []
384
  for lora in selected_loras:
 
396
  pipe.unload_lora_weights()
397
  pipe_i2i.unload_lora_weights()
398
 
399
+ print(f"Active adapters before loading: {pipe.get_active_adapters()}")
400
+
401
  # Load LoRA weights with respective scales
402
  lora_names = []
403
  lora_weights = []
404
  with calculateDuration("Loading LoRA weights"):
405
  for idx, lora in enumerate(selected_loras):
406
+ try:
407
+ lora_name = f"lora_{idx}"
408
+ lora_path = lora['repo']
409
+ weight_name = lora.get("weights")
410
+ print(f"Loading LoRA {lora_name} from {lora_path}")
411
+ if image_input is not None:
412
+ if weight_name:
413
+ pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=lora_name)
414
+ else:
415
+ pipe_i2i.load_lora_weights(lora_path, adapter_name=lora_name)
416
  else:
417
+ if weight_name:
418
+ pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=lora_name)
419
+ else:
420
+ pipe.load_lora_weights(lora_path, adapter_name=lora_name)
421
+ lora_names.append(lora_name)
422
+ lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3)
423
+ except Exception as e:
424
+ print(f"Failed to load LoRA {lora_name}: {str(e)}")
425
+
426
  print("Loaded LoRAs:", lora_names)
427
  print("Adapter weights:", lora_weights)
428
+
429
+ if lora_names:
430
+ if image_input is not None:
431
+ pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
432
+ else:
433
+ pipe.set_adapters(lora_names, adapter_weights=lora_weights)
434
  else:
435
+ print("No LoRAs were successfully loaded.")
436
+ return None, seed, gr.update(visible=False)
437
+
438
+ print(f"Active adapters after loading: {pipe.get_active_adapters()}")
439
+
440
+ # 여기서부터 이미지 생성 로직 (이 부분은 그대로 유지)
441
  with calculateDuration("Randomizing seed"):
442
  if randomize_seed:
443
  seed = random.randint(0, MAX_SEED)
444
 
 
445
  if image_input is not None:
446
  final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
447
  else:
 
453
  final_image = image
454
  progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
455
  yield image, seed, gr.update(value=progress_bar, visible=True)
 
 
456
 
457
  if final_image is None:
458
  raise Exception("Failed to generate image")
459
 
460
  return final_image, seed, gr.update(visible=False)
461
+
462
  except Exception as e:
463
  print(f"Error in run_lora: {str(e)}")
464
  return None, seed, gr.update(visible=False)
465
 
 
 
466
  run_lora.zerogpu = True
467
 
468
  def get_huggingface_safetensors(link):
 
546
  footer {visibility: hidden;}
547
  '''
548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549
  with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
550
  loras_state = gr.State(loras)
551
  selected_indices = gr.State([])
552
 
553
+ gr.Markdown(
554
+ """
555
+ # MixGen3: 멀티 Lora(이미지 학습) 통합 생성 모델
556
+
557
+ ### 사용 안내:
558
+ 1) 갤러리에서 원하는 모델을 선택(최대 3개까지)
559
+ 2) 프롬프트에 한글 또는 영문으로 원하는 내용을 입력
560
+ 3) Generate 버튼 실행
561
+
562
+ ### Contacts: arxivgpt@gmail.com
563
+ """
564
+ )
565
+
566
  with gr.Row():
567
  with gr.Column(scale=3):
568
  prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
569
  with gr.Column(scale=1):
570
  generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
571
+
572
+
573
+
574
+
575
  with gr.Row(elem_id="loaded_loras"):
576
  with gr.Column(scale=1, min_width=25):
577
  randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
 
585
  lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
586
  with gr.Row():
587
  remove_button_1 = gr.Button("Remove", size="sm")
588
+
589
  with gr.Column(scale=8):
590
  with gr.Row():
591
  with gr.Column(scale=0, min_width=50):
 
596
  lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
597
  with gr.Row():
598
  remove_button_2 = gr.Button("Remove", size="sm")
599
+
600
+ with gr.Column(scale=8):
601
+ with gr.Row():
602
+ with gr.Column(scale=0, min_width=50):
603
+ lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
604
+ with gr.Column(scale=3, min_width=100):
605
+ selected_info_3 = gr.Markdown("Select a LoRA 3")
606
+ with gr.Column(scale=5, min_width=50):
607
+ lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
608
+ with gr.Row():
609
+ remove_button_3 = gr.Button("Remove", size="sm")
610
 
611
  with gr.Row():
612
  with gr.Column():
 
645
  randomize_seed = gr.Checkbox(True, label="Randomize seed")
646
  seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648
  gallery.select(
649
  update_selection,
650
  inputs=[selected_indices, loras_state, width, height],
651
+ outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3]
652
  )
653
+
654
  remove_button_1.click(
655
  remove_lora_1,
656
  inputs=[selected_indices, loras_state],
657
+ outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
658
  )
659
+
660
  remove_button_2.click(
661
  remove_lora_2,
662
  inputs=[selected_indices, loras_state],
663
+ outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
664
  )
665
+
666
+ remove_button_3.click(
667
+ remove_lora_3,
668
+ inputs=[selected_indices, loras_state],
669
+ outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
670
+ )
671
+
672
  randomize_button.click(
673
  randomize_loras,
674
  inputs=[selected_indices, loras_state],
675
+ outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, prompt]
676
  )
677
+
678
  add_custom_lora_button.click(
679
  add_custom_lora,
680
  inputs=[custom_lora, selected_indices, loras_state],
681
+ outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
682
  )
683
+
684
  remove_custom_lora_button.click(
685
  remove_custom_lora,
686
  inputs=[selected_indices, loras_state],
687
+ outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
688
  )
689
 
690
  gr.on(
691
  triggers=[generate_button.click, prompt.submit],
692
  fn=run_lora,
693
+ inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, width, height, loras_state],
694
  outputs=[result, seed, progress_bar]
695
  ).then(
696
  fn=lambda x, history: update_history(x, history) if x is not None else history,
 
698
  outputs=history_gallery,
699
  )
700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
701
  if __name__ == "__main__":
702
  app.queue(max_size=20)
703
  app.launch(debug=True)