|
import os |
|
import gradio as gr |
|
import json |
|
import logging |
|
import torch |
|
from PIL import Image |
|
import spaces |
|
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image |
|
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images |
|
from diffusers.utils import load_image |
|
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download |
|
import copy |
|
import random |
|
import time |
|
import requests |
|
import pandas as pd |
|
from transformers import pipeline |
|
from gradio_imageslider import ImageSlider |
|
import numpy as np |
|
import warnings |
|
|
|
|
|
USERNAME = "openfree" |
|
|
|
huggingface_token = os.getenv("HF_TOKEN") |
|
|
|
|
|
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu") |
|
|
|
|
|
|
|
|
|
df = pd.read_csv('prompts.csv', header=None) |
|
prompt_values = df.values.flatten() |
|
|
|
|
|
with open('loras.json', 'r') as f: |
|
loras = json.load(f) |
|
|
|
|
|
dtype = torch.bfloat16 |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
base_model = "black-forest-labs/FLUX.1-dev" |
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device) |
|
|
|
|
|
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) |
|
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) |
|
|
|
|
|
pipe_i2i = AutoPipelineForImage2Image.from_pretrained( |
|
base_model, |
|
vae=good_vae, |
|
transformer=pipe.transformer, |
|
text_encoder=pipe.text_encoder, |
|
tokenizer=pipe.tokenizer, |
|
text_encoder_2=pipe.text_encoder_2, |
|
tokenizer_2=pipe.tokenizer_2, |
|
torch_dtype=dtype |
|
).to(device) |
|
|
|
MAX_SEED = 2**32 - 1 |
|
MAX_PIXEL_BUDGET = 1024 * 1024 |
|
|
|
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) |
|
|
|
class calculateDuration: |
|
def __init__(self, activity_name=""): |
|
self.activity_name = activity_name |
|
|
|
def __enter__(self): |
|
self.start_time = time.time() |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
self.end_time = time.time() |
|
self.elapsed_time = self.end_time - self.start_time |
|
if self.activity_name: |
|
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") |
|
else: |
|
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") |
|
|
|
def download_file(url, directory=None): |
|
if directory is None: |
|
directory = os.getcwd() |
|
|
|
|
|
filename = url.split('/')[-1] |
|
|
|
|
|
filepath = os.path.join(directory, filename) |
|
|
|
|
|
response = requests.get(url) |
|
response.raise_for_status() |
|
|
|
|
|
with open(filepath, 'wb') as file: |
|
file.write(response.content) |
|
|
|
return filepath |
|
|
|
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height): |
|
selected_index = evt.index |
|
selected_indices = selected_indices or [] |
|
if selected_index in selected_indices: |
|
selected_indices.remove(selected_index) |
|
else: |
|
if len(selected_indices) < 3: |
|
selected_indices.append(selected_index) |
|
else: |
|
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.") |
|
return gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update() |
|
|
|
selected_info_1 = "Select LoRA 1" |
|
selected_info_2 = "Select LoRA 2" |
|
selected_info_3 = "Select LoRA 3" |
|
|
|
lora_scale_1 = 1.15 |
|
lora_scale_2 = 1.15 |
|
lora_scale_3 = 1.15 |
|
lora_image_1 = None |
|
lora_image_2 = None |
|
lora_image_3 = None |
|
|
|
if len(selected_indices) >= 1: |
|
lora1 = loras_state[selected_indices[0]] |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" |
|
lora_image_1 = lora1['image'] |
|
if len(selected_indices) >= 2: |
|
lora2 = loras_state[selected_indices[1]] |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" |
|
lora_image_2 = lora2['image'] |
|
if len(selected_indices) >= 3: |
|
lora3 = loras_state[selected_indices[2]] |
|
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" |
|
lora_image_3 = lora3['image'] |
|
|
|
if selected_indices: |
|
last_selected_lora = loras_state[selected_indices[-1]] |
|
new_placeholder = f"Type a prompt for {last_selected_lora['title']}" |
|
else: |
|
new_placeholder = "Type a prompt after selecting a LoRA" |
|
|
|
return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3 |
|
|
|
def remove_lora(selected_indices, loras_state, index_to_remove): |
|
if len(selected_indices) > index_to_remove: |
|
selected_indices.pop(index_to_remove) |
|
|
|
selected_info_1 = "Select LoRA 1" |
|
selected_info_2 = "Select LoRA 2" |
|
selected_info_3 = "Select LoRA 3" |
|
lora_scale_1 = 1.15 |
|
lora_scale_2 = 1.15 |
|
lora_scale_3 = 1.15 |
|
lora_image_1 = None |
|
lora_image_2 = None |
|
lora_image_3 = None |
|
|
|
for i, idx in enumerate(selected_indices): |
|
lora = loras_state[idx] |
|
if i == 0: |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora['title']}]({lora['repo']}) ✨" |
|
lora_image_1 = lora['image'] |
|
elif i == 1: |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora['title']}]({lora['repo']}) ✨" |
|
lora_image_2 = lora['image'] |
|
elif i == 2: |
|
selected_info_3 = f"### LoRA 3 Selected: [{lora['title']}]({lora['repo']}) ✨" |
|
lora_image_3 = lora['image'] |
|
|
|
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3 |
|
|
|
def remove_lora_1(selected_indices, loras_state): |
|
return remove_lora(selected_indices, loras_state, 0) |
|
|
|
def remove_lora_2(selected_indices, loras_state): |
|
return remove_lora(selected_indices, loras_state, 1) |
|
|
|
def remove_lora_3(selected_indices, loras_state): |
|
return remove_lora(selected_indices, loras_state, 2) |
|
|
|
def randomize_loras(selected_indices, loras_state): |
|
try: |
|
if len(loras_state) < 3: |
|
raise gr.Error("Not enough LoRAs to randomize.") |
|
selected_indices = random.sample(range(len(loras_state)), 3) |
|
lora1 = loras_state[selected_indices[0]] |
|
lora2 = loras_state[selected_indices[1]] |
|
lora3 = loras_state[selected_indices[2]] |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" |
|
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" |
|
lora_scale_1 = 1.15 |
|
lora_scale_2 = 1.15 |
|
lora_scale_3 = 1.15 |
|
lora_image_1 = lora1.get('image', 'path/to/default/image.png') |
|
lora_image_2 = lora2.get('image', 'path/to/default/image.png') |
|
lora_image_3 = lora3.get('image', 'path/to/default/image.png') |
|
random_prompt = random.choice(prompt_values) |
|
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, random_prompt |
|
except Exception as e: |
|
print(f"Error in randomize_loras: {str(e)}") |
|
return "Error", "Error", "Error", [], 1.15, 1.15, 1.15, 'path/to/default/image.png', 'path/to/default/image.png', 'path/to/default/image.png', "" |
|
|
|
def add_custom_lora(custom_lora, selected_indices, current_loras): |
|
if custom_lora: |
|
try: |
|
title, repo, path, trigger_word, image = check_custom_model(custom_lora) |
|
print(f"Loaded custom LoRA: {repo}") |
|
existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None) |
|
if existing_item_index is None: |
|
if repo.endswith(".safetensors") and repo.startswith("http"): |
|
repo = download_file(repo) |
|
new_item = { |
|
"image": image if image else "/home/user/app/custom.png", |
|
"title": title, |
|
"repo": repo, |
|
"weights": path, |
|
"trigger_word": trigger_word |
|
} |
|
print(f"New LoRA: {new_item}") |
|
existing_item_index = len(current_loras) |
|
current_loras.append(new_item) |
|
|
|
|
|
gallery_items = [(item["image"], item["title"]) for item in current_loras] |
|
|
|
if len(selected_indices) < 3: |
|
selected_indices.append(existing_item_index) |
|
else: |
|
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.") |
|
|
|
|
|
selected_info_1 = "Select a LoRA 1" |
|
selected_info_2 = "Select a LoRA 2" |
|
selected_info_3 = "Select a LoRA 3" |
|
lora_scale_1 = 1.15 |
|
lora_scale_2 = 1.15 |
|
lora_scale_3 = 1.15 |
|
lora_image_1 = None |
|
lora_image_2 = None |
|
lora_image_3 = None |
|
if len(selected_indices) >= 1: |
|
lora1 = current_loras[selected_indices[0]] |
|
selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨" |
|
lora_image_1 = lora1['image'] if lora1['image'] else None |
|
if len(selected_indices) >= 2: |
|
lora2 = current_loras[selected_indices[1]] |
|
selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨" |
|
lora_image_2 = lora2['image'] if lora2['image'] else None |
|
if len(selected_indices) >= 3: |
|
lora3 = current_loras[selected_indices[2]] |
|
selected_info_3 = f"### LoRA 3 Selected: {lora3['title']} ✨" |
|
lora_image_3 = lora3['image'] if lora3['image'] else None |
|
print("Finished adding custom LoRA") |
|
return ( |
|
current_loras, |
|
gr.update(value=gallery_items), |
|
selected_info_1, |
|
selected_info_2, |
|
selected_info_3, |
|
selected_indices, |
|
lora_scale_1, |
|
lora_scale_2, |
|
lora_scale_3, |
|
lora_image_1, |
|
lora_image_2, |
|
lora_image_3 |
|
) |
|
except Exception as e: |
|
print(e) |
|
gr.Warning(str(e)) |
|
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update() |
|
else: |
|
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update() |
|
|
|
def remove_custom_lora(selected_indices, current_loras): |
|
if current_loras: |
|
custom_lora_repo = current_loras[-1]['repo'] |
|
|
|
current_loras = current_loras[:-1] |
|
|
|
custom_lora_index = len(current_loras) |
|
if custom_lora_index in selected_indices: |
|
selected_indices.remove(custom_lora_index) |
|
|
|
gallery_items = [(item["image"], item["title"]) for item in current_loras] |
|
|
|
selected_info_1 = "Select a LoRA 1" |
|
selected_info_2 = "Select a LoRA 2" |
|
selected_info_3 = "Select a LoRA 3" |
|
lora_scale_1 = 1.15 |
|
lora_scale_2 = 1.15 |
|
lora_scale_3 = 1.15 |
|
lora_image_1 = None |
|
lora_image_2 = None |
|
lora_image_3 = None |
|
if len(selected_indices) >= 1: |
|
lora1 = current_loras[selected_indices[0]] |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨" |
|
lora_image_1 = lora1['image'] |
|
if len(selected_indices) >= 2: |
|
lora2 = current_loras[selected_indices[1]] |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨" |
|
lora_image_2 = lora2['image'] |
|
if len(selected_indices) >= 3: |
|
lora3 = current_loras[selected_indices[2]] |
|
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨" |
|
lora_image_3 = lora3['image'] |
|
return ( |
|
current_loras, |
|
gr.update(value=gallery_items), |
|
selected_info_1, |
|
selected_info_2, |
|
selected_info_3, |
|
selected_indices, |
|
lora_scale_1, |
|
lora_scale_2, |
|
lora_scale_3, |
|
lora_image_1, |
|
lora_image_2, |
|
lora_image_3 |
|
) |
|
|
|
|
|
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress): |
|
print("Generating image...") |
|
pipe.to("cuda") |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
with calculateDuration("Generating image"): |
|
|
|
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( |
|
prompt=prompt_mash, |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": 1.0}, |
|
output_type="pil", |
|
good_vae=good_vae, |
|
): |
|
yield img |
|
|
|
|
|
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed): |
|
pipe_i2i.to("cuda") |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
image_input = load_image(image_input_path) |
|
final_image = pipe_i2i( |
|
prompt=prompt_mash, |
|
image=image_input, |
|
strength=image_strength, |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": 1.0}, |
|
output_type="pil", |
|
).images[0] |
|
return final_image |
|
|
|
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, |
|
lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, |
|
width, height, loras_state, progress=gr.Progress(track_tqdm=True)): |
|
try: |
|
|
|
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt): |
|
translated = translator(prompt, max_length=512)[0]['translation_text'] |
|
print(f"Original prompt: {prompt}") |
|
print(f"Translated prompt: {translated}") |
|
prompt = translated |
|
|
|
if not selected_indices: |
|
raise gr.Error("You must select at least one LoRA before proceeding.") |
|
|
|
selected_loras = [loras_state[idx] for idx in selected_indices] |
|
|
|
|
|
prepends = [] |
|
appends = [] |
|
for lora in selected_loras: |
|
trigger_word = lora.get('trigger_word', '') |
|
if trigger_word: |
|
if lora.get("trigger_position") == "prepend": |
|
prepends.append(trigger_word) |
|
else: |
|
appends.append(trigger_word) |
|
prompt_mash = " ".join(prepends + [prompt] + appends) |
|
print("Prompt Mash: ", prompt_mash) |
|
|
|
|
|
with calculateDuration("Unloading LoRA"): |
|
pipe.unload_lora_weights() |
|
pipe_i2i.unload_lora_weights() |
|
|
|
print(f"Active adapters before loading: {pipe.get_active_adapters()}") |
|
|
|
|
|
lora_names = [] |
|
lora_weights = [] |
|
|
|
with calculateDuration("Loading LoRA weights"): |
|
for idx, lora in enumerate(selected_loras): |
|
try: |
|
lora_name = f"lora_{idx}" |
|
lora_path = lora['repo'] |
|
|
|
|
|
if lora.get('private', False): |
|
lora_path = load_private_model(lora_path, huggingface_token) |
|
print(f"Using private model path: {lora_path}") |
|
|
|
if image_input is not None: |
|
pipe_i2i.load_lora_weights( |
|
lora_path, |
|
adapter_name=lora_name, |
|
token=huggingface_token |
|
) |
|
else: |
|
pipe.load_lora_weights( |
|
lora_path, |
|
adapter_name=lora_name, |
|
token=huggingface_token |
|
) |
|
|
|
lora_names.append(lora_name) |
|
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3) |
|
print(f"Successfully loaded LoRA {lora_name} from {lora_path}") |
|
|
|
except Exception as e: |
|
print(f"Failed to load LoRA {lora_name}: {str(e)}") |
|
continue |
|
|
|
|
|
|
|
print("Loaded LoRAs:", lora_names) |
|
print("Adapter weights:", lora_weights) |
|
|
|
if lora_names: |
|
if image_input is not None: |
|
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights) |
|
else: |
|
pipe.set_adapters(lora_names, adapter_weights=lora_weights) |
|
else: |
|
print("No LoRAs were successfully loaded.") |
|
return None, seed, gr.update(visible=False) |
|
|
|
print(f"Active adapters after loading: {pipe.get_active_adapters()}") |
|
|
|
|
|
with calculateDuration("Randomizing seed"): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
if image_input is not None: |
|
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed) |
|
else: |
|
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress) |
|
final_image = None |
|
step_counter = 0 |
|
for image in image_generator: |
|
step_counter += 1 |
|
final_image = image |
|
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>' |
|
yield image, seed, gr.update(value=progress_bar, visible=True) |
|
|
|
if final_image is None: |
|
raise Exception("Failed to generate image") |
|
|
|
return final_image, seed, gr.update(visible=False) |
|
|
|
except Exception as e: |
|
print(f"Error in run_lora: {str(e)}") |
|
return None, seed, gr.update(visible=False) |
|
|
|
run_lora.zerogpu = True |
|
|
|
def get_huggingface_safetensors(link): |
|
split_link = link.split("/") |
|
if len(split_link) == 2: |
|
model_card = ModelCard.load(link) |
|
base_model = model_card.data.get("base_model") |
|
print(f"Base model: {base_model}") |
|
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]: |
|
raise Exception("Not a FLUX LoRA!") |
|
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None |
|
fs = HfFileSystem() |
|
safetensors_name = None |
|
try: |
|
list_of_files = fs.ls(link, detail=False) |
|
for file in list_of_files: |
|
if file.endswith(".safetensors"): |
|
safetensors_name = file.split("/")[-1] |
|
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): |
|
image_elements = file.split("/") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" |
|
except Exception as e: |
|
print(e) |
|
raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA") |
|
if not safetensors_name: |
|
raise gr.Error("No *.safetensors file found in the repository") |
|
return split_link[1], link, safetensors_name, trigger_word, image_url |
|
else: |
|
raise gr.Error("Invalid Hugging Face repository link") |
|
|
|
def check_custom_model(link): |
|
if link.endswith(".safetensors"): |
|
|
|
title = os.path.basename(link) |
|
repo = link |
|
path = None |
|
trigger_word = "" |
|
image_url = None |
|
return title, repo, path, trigger_word, image_url |
|
elif link.startswith("https://"): |
|
if "huggingface.co" in link: |
|
link_split = link.split("huggingface.co/") |
|
return get_huggingface_safetensors(link_split[1]) |
|
else: |
|
raise Exception("Unsupported URL") |
|
else: |
|
|
|
return get_huggingface_safetensors(link) |
|
|
|
def update_history(new_image, history): |
|
"""Updates the history gallery with the new image.""" |
|
if history is None: |
|
history = [] |
|
if new_image is not None: |
|
history.insert(0, new_image) |
|
return history |
|
|
|
|
|
|
|
def refresh_models(huggingface_token): |
|
try: |
|
headers = { |
|
"Authorization": f"Bearer {huggingface_token}", |
|
"Accept": "application/json" |
|
} |
|
|
|
username = USERNAME |
|
api_url = f"https://huggingface.co/api/models?author={username}" |
|
response = requests.get(api_url, headers=headers) |
|
if response.status_code != 200: |
|
raise Exception(f"Failed to fetch models from HuggingFace. Status code: {response.status_code}") |
|
|
|
all_models = response.json() |
|
print(f"Found {len(all_models)} models for user {username}") |
|
|
|
user_models = [ |
|
model for model in all_models |
|
if model.get('tags') and ('flux' in [tag.lower() for tag in model.get('tags', [])] or |
|
'flux-lora' in [tag.lower() for tag in model.get('tags', [])]) |
|
] |
|
|
|
print(f"Found {len(user_models)} FLUX models") |
|
|
|
new_models = [] |
|
for model in user_models: |
|
try: |
|
model_id = model['id'] |
|
model_card_url = f"https://huggingface.co/api/models/{model_id}" |
|
model_info_response = requests.get(model_card_url, headers=headers) |
|
model_info = model_info_response.json() |
|
|
|
|
|
is_private = model.get('private', False) |
|
base_image_name = "1732195028106__000001000_0.jpg" |
|
|
|
try: |
|
|
|
fs = HfFileSystem(token=huggingface_token) |
|
samples_path = f"{model_id}/samples" |
|
files = fs.ls(samples_path, detail=True) |
|
jpg_files = [ |
|
f['name'] for f in files |
|
if isinstance(f, dict) and |
|
'name' in f and |
|
f['name'].lower().endswith('.jpg') and |
|
any(char.isdigit() for char in os.path.basename(f['name'])) |
|
] |
|
|
|
if jpg_files: |
|
base_image_name = os.path.basename(jpg_files[0]) |
|
except Exception as e: |
|
print(f"Error accessing samples folder for {model_id}: {str(e)}") |
|
|
|
|
|
if is_private: |
|
|
|
cache_dir = f"models/{model_id.replace('/', '_')}/samples" |
|
os.makedirs(cache_dir, exist_ok=True) |
|
|
|
|
|
image_url = f"https://huggingface.co/{model_id}/resolve/main/samples/{base_image_name}" |
|
local_image_path = os.path.join(cache_dir, base_image_name) |
|
|
|
if not os.path.exists(local_image_path): |
|
response = requests.get(image_url, headers=headers) |
|
if response.status_code == 200: |
|
with open(local_image_path, 'wb') as f: |
|
f.write(response.content) |
|
|
|
image_url = local_image_path |
|
else: |
|
image_url = f"https://huggingface.co/{model_id}/resolve/main/samples/{base_image_name}" |
|
|
|
model_info = { |
|
"image": image_url, |
|
"title": f"[Private] {model_id.split('/')[-1]}" if is_private else model_id.split('/')[-1], |
|
"repo": model_id, |
|
"weights": "pytorch_lora_weights.safetensors", |
|
"trigger_word": model_info.get('instance_prompt', ''), |
|
"private": is_private |
|
} |
|
new_models.append(model_info) |
|
print(f"Added model: {model_id} with image: {image_url}") |
|
|
|
except Exception as e: |
|
print(f"Error processing model {model['id']}: {str(e)}") |
|
continue |
|
|
|
updated_loras = new_models + [lora for lora in loras if lora['repo'] not in [m['repo'] for m in new_models]] |
|
|
|
print(f"Total models after refresh: {len(updated_loras)}") |
|
return updated_loras |
|
except Exception as e: |
|
print(f"Error refreshing models: {str(e)}") |
|
return loras |
|
|
|
def load_private_model(model_id, huggingface_token): |
|
"""Private 모델을 로드하는 함수""" |
|
try: |
|
headers = {"Authorization": f"Bearer {huggingface_token}"} |
|
|
|
|
|
local_dir = snapshot_download( |
|
repo_id=model_id, |
|
token=huggingface_token, |
|
local_dir=f"models/{model_id.replace('/', '_')}", |
|
local_dir_use_symlinks=False |
|
) |
|
|
|
|
|
safetensors_file = None |
|
for root, dirs, files in os.walk(local_dir): |
|
for file in files: |
|
if file.endswith('.safetensors'): |
|
safetensors_file = os.path.join(root, file) |
|
break |
|
if safetensors_file: |
|
break |
|
|
|
if not safetensors_file: |
|
raise Exception(f"No .safetensors file found in {local_dir}") |
|
|
|
print(f"Found safetensors file: {safetensors_file}") |
|
return safetensors_file |
|
|
|
except Exception as e: |
|
print(f"Error loading private model {model_id}: {str(e)}") |
|
raise e |
|
|
|
custom_theme = gr.themes.Base( |
|
primary_hue="indigo", |
|
secondary_hue="slate", |
|
neutral_hue="slate", |
|
).set( |
|
|
|
background_fill_primary="#1a1a1a", |
|
background_fill_secondary="#2d2d2d", |
|
border_color_primary="#404040", |
|
|
|
|
|
button_primary_background_fill="#4F46E5", |
|
button_primary_background_fill_dark="#4338CA", |
|
button_primary_background_fill_hover="#6366F1", |
|
button_primary_border_color="#4F46E5", |
|
button_primary_border_color_dark="#4338CA", |
|
button_primary_text_color="white", |
|
button_primary_text_color_dark="white", |
|
|
|
button_secondary_background_fill="#374151", |
|
button_secondary_background_fill_dark="#1F2937", |
|
button_secondary_background_fill_hover="#4B5563", |
|
button_secondary_text_color="white", |
|
button_secondary_text_color_dark="white", |
|
|
|
|
|
block_background_fill="#2d2d2d", |
|
block_background_fill_dark="#1F2937", |
|
block_label_background_fill="#4F46E5", |
|
block_label_background_fill_dark="#4338CA", |
|
block_label_text_color="white", |
|
block_label_text_color_dark="white", |
|
block_title_text_color="white", |
|
block_title_text_color_dark="white", |
|
|
|
|
|
input_background_fill="#374151", |
|
input_background_fill_dark="#1F2937", |
|
input_border_color="#4B5563", |
|
input_border_color_dark="#374151", |
|
input_placeholder_color="#9CA3AF", |
|
input_placeholder_color_dark="#6B7280", |
|
|
|
|
|
shadow_spread="8px", |
|
shadow_inset="0px 2px 4px 0px rgba(0,0,0,0.1)", |
|
|
|
|
|
panel_background_fill="#2d2d2d", |
|
panel_background_fill_dark="#1F2937", |
|
|
|
|
|
border_color_accent="#4F46E5", |
|
border_color_accent_dark="#4338CA" |
|
) |
|
|
|
css = ''' |
|
/* 기본 버튼 및 컴포넌트 스타일 */ |
|
#gen_btn { |
|
height: 100% |
|
} |
|
#title { |
|
text-align: center |
|
} |
|
#title h1 { |
|
font-size: 3em; |
|
display: inline-flex; |
|
align-items: center |
|
} |
|
#title img { |
|
width: 100px; |
|
margin-right: 0.25em |
|
} |
|
#lora_list { |
|
background: var(--block-background-fill); |
|
padding: 0 1em .3em; |
|
font-size: 90% |
|
} |
|
/* 커스텀 LoRA 카드 스타일 */ |
|
.custom_lora_card { |
|
margin-bottom: 1em |
|
} |
|
.card_internal { |
|
display: flex; |
|
height: 100px; |
|
margin-top: .5em |
|
} |
|
.card_internal img { |
|
margin-right: 1em |
|
} |
|
/* 유틸리티 클래스 */ |
|
.styler { |
|
--form-gap-width: 0px !important |
|
} |
|
/* 프로그레스 바 스타일 */ |
|
#progress { |
|
height: 30px; |
|
width: 90% !important; |
|
margin: 0 auto !important; |
|
} |
|
#progress .generating { |
|
display: none |
|
} |
|
.progress-container { |
|
width: 100%; |
|
height: 30px; |
|
background-color: #f0f0f0; |
|
border-radius: 15px; |
|
overflow: hidden; |
|
margin-bottom: 20px |
|
} |
|
.progress-bar { |
|
height: 100%; |
|
background-color: #4f46e5; |
|
width: calc(var(--current) / var(--total) * 100%); |
|
transition: width 0.5s ease-in-out |
|
} |
|
/* 컴포넌트 특정 스타일 */ |
|
#component-8, .button_total { |
|
height: 100%; |
|
align-self: stretch; |
|
} |
|
#loaded_loras [data-testid="block-info"] { |
|
font-size: 80% |
|
} |
|
#custom_lora_structure { |
|
background: var(--block-background-fill) |
|
} |
|
#custom_lora_btn { |
|
margin-top: auto; |
|
margin-bottom: 11px |
|
} |
|
#random_btn { |
|
font-size: 300% |
|
} |
|
#component-11 { |
|
align-self: stretch; |
|
} |
|
/* 갤러리 메인 스타일 */ |
|
#lora_gallery { |
|
margin: 20px 0; |
|
padding: 10px; |
|
border: 1px solid #ddd; |
|
border-radius: 12px; |
|
background: linear-gradient(to bottom right, #ffffff, #f8f9fa); |
|
width: 100% !important; |
|
height: 800px !important; |
|
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); |
|
display: block !important; |
|
} |
|
/* 갤러리 그리드 스타일 */ |
|
#gallery { |
|
display: grid !important; |
|
grid-template-columns: repeat(10, 1fr) !important; |
|
gap: 10px !important; |
|
padding: 10px !important; |
|
width: 100% !important; |
|
height: 100% !important; |
|
overflow-y: auto !important; |
|
max-width: 100% !important; |
|
} |
|
/* 갤러리 아이템 스타일 */ |
|
.gallery-item { |
|
position: relative !important; |
|
width: 100% !important; |
|
aspect-ratio: 1 !important; |
|
margin: 0 !important; |
|
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); |
|
transition: transform 0.3s ease, box-shadow 0.3s ease; |
|
border-radius: 12px; |
|
overflow: hidden; |
|
} |
|
.gallery-item img { |
|
width: 100% !important; |
|
height: 100% !important; |
|
object-fit: cover !important; |
|
border-radius: 12px !important; |
|
} |
|
/* 갤러리 그리드 래퍼 */ |
|
.wrap, .svelte-w6dy5e { |
|
display: grid !important; |
|
grid-template-columns: repeat(10, 1fr) !important; |
|
gap: 10px !important; |
|
width: 100% !important; |
|
max-width: 100% !important; |
|
} |
|
/* 컨테이너 공통 스타일 */ |
|
.container, .content, .block, .contain { |
|
width: 100% !important; |
|
max-width: 100% !important; |
|
margin: 0 !important; |
|
padding: 0 !important; |
|
} |
|
.row { |
|
width: 100% !important; |
|
margin: 0 !important; |
|
padding: 0 !important; |
|
} |
|
/* 버튼 스타일 */ |
|
.button_total { |
|
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06); |
|
transition: all 0.3s ease; |
|
} |
|
.button_total:hover { |
|
transform: translateY(-2px); |
|
box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05); |
|
} |
|
/* 입력 필드 스타일 */ |
|
input, textarea { |
|
box-shadow: inset 0 2px 4px 0 rgba(0, 0, 0, 0.06); |
|
transition: all 0.3s ease; |
|
} |
|
input:focus, textarea:focus { |
|
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5); |
|
} |
|
/* 컴포넌트 border-radius */ |
|
.gradio-container .input, |
|
.gradio-container .button, |
|
.gradio-container .block { |
|
border-radius: 12px; |
|
} |
|
/* 스크롤바 스타일 */ |
|
#gallery::-webkit-scrollbar { |
|
width: 8px; |
|
} |
|
#gallery::-webkit-scrollbar-track { |
|
background: #f1f1f1; |
|
border-radius: 4px; |
|
} |
|
#gallery::-webkit-scrollbar-thumb { |
|
background: #888; |
|
border-radius: 4px; |
|
} |
|
#gallery::-webkit-scrollbar-thumb:hover { |
|
background: #555; |
|
} |
|
/* Flex 컨테이너 */ |
|
.flex { |
|
width: 100% !important; |
|
max-width: 100% !important; |
|
display: flex !important; |
|
} |
|
/* Svelte 특정 클래스 */ |
|
.svelte-1p9xokt { |
|
width: 100% !important; |
|
max-width: 100% !important; |
|
} |
|
/* Footer 숨김 */ |
|
#footer { |
|
visibility: hidden; |
|
} |
|
/* 결과 이미지 및 컨테이너 스타일 */ |
|
#result_column, #result_column > div { |
|
display: flex !important; |
|
flex-direction: column !important; |
|
align-items: flex-start !important; /* center에서 flex-start로 변경 */ |
|
width: 100% !important; |
|
margin: 0 !important; /* auto에서 0으로 변경 */ |
|
} |
|
.generated-image, .generated-image > div { |
|
display: flex !important; |
|
justify-content: flex-start !important; /* center에서 flex-start로 변경 */ |
|
align-items: flex-start !important; /* center에서 flex-start로 변경 */ |
|
width: 90% !important; |
|
max-width: 768px !important; |
|
margin: 0 !important; /* auto에서 0으로 변경 */ |
|
margin-left: 20px !important; /* 왼쪽 여백 추가 */ |
|
} |
|
.generated-image img { |
|
margin: 0 !important; /* auto에서 0으로 변경 */ |
|
display: block !important; |
|
max-width: 100% !important; |
|
} |
|
/* 히스토리 갤러리도 좌측 정렬로 변경 */ |
|
.history-gallery { |
|
display: flex !important; |
|
justify-content: flex-start !important; /* center에서 flex-start로 변경 */ |
|
width: 90% !important; |
|
max-width: 90% !important; |
|
margin: 0 !important; /* auto에서 0으로 변경 */ |
|
margin-left: 20px !important; /* 왼쪽 여백 추가 */ |
|
/* 새로고침 버튼 스타일 */ |
|
#refresh-button { |
|
margin: 10px; |
|
padding: 8px 16px; |
|
background-color: #4a5568; |
|
color: white; |
|
border-radius: 8px; |
|
transition: all 0.3s ease; |
|
} |
|
#refresh-button:hover { |
|
background-color: #2d3748; |
|
transform: scale(1.05); |
|
} |
|
#refresh-button:active { |
|
transform: scale(0.95); |
|
} |
|
/* Markdown 텍스트 스타일 */ |
|
.markdown { |
|
color: white !important; |
|
} |
|
|
|
/* 프롬프트 입력 필드 텍스트 스타일 */ |
|
textarea, input[type="text"] { |
|
color: white !important; |
|
} |
|
|
|
/* 라벨 텍스트 스타일 */ |
|
label, .label-text { |
|
color: white !important; |
|
} |
|
|
|
/* Markdown 헤더 스타일 */ |
|
.markdown h1, |
|
.markdown h2, |
|
.markdown h3, |
|
.markdown h4, |
|
.markdown h5, |
|
.markdown h6, |
|
.markdown p { |
|
color: white !important; |
|
} |
|
|
|
/* 입력 필드 placeholder 스타일 */ |
|
::placeholder { |
|
color: rgba(255, 255, 255, 0.5) !important; |
|
} |
|
|
|
/* 텍스트 영역 스타일 */ |
|
.gradio-container textarea { |
|
color: white !important; |
|
} |
|
''' |
|
|
|
with gr.Blocks(theme=custom_theme, css=css, delete_cache=(60, 3600)) as app: |
|
loras_state = gr.State(loras) |
|
selected_indices = gr.State([]) |
|
|
|
gr.Markdown( |
|
"""# 🎨 GiniGen |
|
### 사용 안내: 갤러리에서 원하는 모델을 선택(최대 3개까지) < 프롬프트에 한글 또는 영문으로 원하는 내용을 입력 < Generate 버튼 실행""", |
|
elem_classes=["markdown"] |
|
) |
|
|
|
|
|
with gr.Row(): |
|
refresh_button = gr.Button("🔄 모델 새로고침(나만의 맞춤 학습된 Private 모델 불러오기)", variant="secondary") |
|
|
|
with gr.Row(elem_id="lora_gallery", equal_height=True): |
|
gallery = gr.Gallery( |
|
value=[(item["image"], item["title"]) for item in loras], |
|
label="LoRA Explorer Gallery", |
|
columns=11, |
|
elem_id="gallery", |
|
height=800, |
|
object_fit="cover", |
|
show_label=True, |
|
allow_preview=False, |
|
show_share_button=False, |
|
container=True, |
|
preview=False |
|
) |
|
|
|
|
|
with gr.Tab(label="Generate"): |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") |
|
with gr.Column(scale=1): |
|
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"]) |
|
|
|
|
|
with gr.Row(elem_id="loaded_loras"): |
|
|
|
with gr.Column(scale=1, min_width=25): |
|
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn") |
|
|
|
|
|
with gr.Column(scale=8): |
|
with gr.Row(): |
|
with gr.Column(scale=0, min_width=50): |
|
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) |
|
with gr.Column(scale=3, min_width=100): |
|
selected_info_1 = gr.Markdown("Select a LoRA 1") |
|
with gr.Column(scale=5, min_width=50): |
|
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15) |
|
with gr.Row(): |
|
remove_button_1 = gr.Button("Remove", size="sm") |
|
|
|
|
|
with gr.Column(scale=8): |
|
with gr.Row(): |
|
with gr.Column(scale=0, min_width=50): |
|
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) |
|
with gr.Column(scale=3, min_width=100): |
|
selected_info_2 = gr.Markdown("Select a LoRA 2") |
|
with gr.Column(scale=5, min_width=50): |
|
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15) |
|
with gr.Row(): |
|
remove_button_2 = gr.Button("Remove", size="sm") |
|
|
|
|
|
with gr.Column(scale=8): |
|
with gr.Row(): |
|
with gr.Column(scale=0, min_width=50): |
|
lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) |
|
with gr.Column(scale=3, min_width=100): |
|
selected_info_3 = gr.Markdown("Select a LoRA 3") |
|
with gr.Column(scale=5, min_width=50): |
|
lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.01, value=1.15) |
|
with gr.Row(): |
|
remove_button_3 = gr.Button("Remove", size="sm") |
|
|
|
|
|
with gr.Column(elem_id="result_column"): |
|
progress_bar = gr.Markdown(elem_id="progress", visible=False) |
|
with gr.Column(elem_id="result_box"): |
|
result = gr.Image( |
|
label="Generated Image", |
|
interactive=False, |
|
elem_classes=["generated-image"], |
|
container=True, |
|
elem_id="result_image", |
|
width="100%" |
|
) |
|
with gr.Accordion("History", open=False): |
|
history_gallery = gr.Gallery( |
|
label="History", |
|
columns=6, |
|
object_fit="contain", |
|
interactive=False, |
|
elem_classes=["history-gallery"] |
|
) |
|
|
|
|
|
|
|
with gr.Row(): |
|
with gr.Accordion("Advanced Settings", open=False): |
|
with gr.Row(): |
|
input_image = gr.Image(label="Input image", type="filepath") |
|
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) |
|
with gr.Column(): |
|
with gr.Row(): |
|
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) |
|
with gr.Row(): |
|
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) |
|
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) |
|
with gr.Row(): |
|
randomize_seed = gr.Checkbox(True, label="Randomize seed") |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) |
|
|
|
|
|
with gr.Column(): |
|
with gr.Group(): |
|
with gr.Row(elem_id="custom_lora_structure"): |
|
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150) |
|
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150) |
|
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False) |
|
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") |
|
|
|
|
|
gallery.select( |
|
update_selection, |
|
inputs=[selected_indices, loras_state, width, height], |
|
outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_indices, |
|
lora_scale_1, lora_scale_2, lora_scale_3, width, height, |
|
lora_image_1, lora_image_2, lora_image_3] |
|
) |
|
|
|
remove_button_1.click( |
|
remove_lora_1, |
|
inputs=[selected_indices, loras_state], |
|
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, |
|
lora_scale_1, lora_scale_2, lora_scale_3, |
|
lora_image_1, lora_image_2, lora_image_3] |
|
) |
|
|
|
remove_button_2.click( |
|
remove_lora_2, |
|
inputs=[selected_indices, loras_state], |
|
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, |
|
lora_scale_1, lora_scale_2, lora_scale_3, |
|
lora_image_1, lora_image_2, lora_image_3] |
|
) |
|
|
|
remove_button_3.click( |
|
remove_lora_3, |
|
inputs=[selected_indices, loras_state], |
|
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, |
|
lora_scale_1, lora_scale_2, lora_scale_3, |
|
lora_image_1, lora_image_2, lora_image_3] |
|
) |
|
|
|
randomize_button.click( |
|
randomize_loras, |
|
inputs=[selected_indices, loras_state], |
|
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, |
|
lora_scale_1, lora_scale_2, lora_scale_3, |
|
lora_image_1, lora_image_2, lora_image_3, prompt] |
|
) |
|
|
|
add_custom_lora_button.click( |
|
add_custom_lora, |
|
inputs=[custom_lora, selected_indices, loras_state], |
|
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, |
|
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, |
|
lora_image_1, lora_image_2, lora_image_3] |
|
) |
|
|
|
remove_custom_lora_button.click( |
|
remove_custom_lora, |
|
inputs=[selected_indices, loras_state], |
|
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, |
|
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, |
|
lora_image_1, lora_image_2, lora_image_3] |
|
) |
|
|
|
gr.on( |
|
triggers=[generate_button.click, prompt.submit], |
|
fn=run_lora, |
|
inputs=[prompt, input_image, image_strength, cfg_scale, steps, |
|
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, |
|
randomize_seed, seed, width, height, loras_state], |
|
outputs=[result, seed, progress_bar] |
|
).then( |
|
fn=lambda x, history: update_history(x, history) if x is not None else history, |
|
inputs=[result, history_gallery], |
|
outputs=history_gallery |
|
) |
|
|
|
|
|
def refresh_gallery(): |
|
updated_loras = refresh_models(huggingface_token) |
|
return ( |
|
gr.update(value=[(item["image"], item["title"]) for item in updated_loras]), |
|
updated_loras |
|
) |
|
|
|
refresh_button.click( |
|
refresh_gallery, |
|
outputs=[gallery, loras_state] |
|
) |
|
|
|
if __name__ == "__main__": |
|
app.queue(max_size=20) |
|
app.launch(debug=True) |