Spaces:
openfree
/
Running on Zero

ginid / app-backup.py
openfree's picture
Update app-backup.py
7992bb1 verified
import spaces
import time
import os
import gradio as gr
import torch
from einops import rearrange
from PIL import Image
from flux.cli import SamplingOptions
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
from flux.util import load_ae, load_clip, load_flow_model, load_t5
from pulid.pipeline_flux import PuLIDPipeline
from pulid.utils import resize_numpy_image_long
def get_models(name: str, device: torch.device, offload: bool):
t5 = load_t5(device, max_length=128)
clip = load_clip(device)
model = load_flow_model(name, device="cpu" if offload else device)
model.eval()
ae = load_ae(name, device="cpu" if offload else device)
return model, ae, t5, clip
class FluxGenerator:
def __init__(self):
self.device = torch.device('cuda')
self.offload = False
self.model_name = 'flux-dev'
self.model, self.ae, self.t5, self.clip = get_models(
self.model_name,
device=self.device,
offload=self.offload,
)
self.pulid_model = PuLIDPipeline(self.model, 'cuda', weight_dtype=torch.bfloat16)
self.pulid_model.load_pretrain()
flux_generator = FluxGenerator()
@spaces.GPU
@torch.inference_mode()
def generate_image(
width,
height,
num_steps,
start_step,
guidance,
seed,
prompt,
id_image=None,
id_weight=1.0,
neg_prompt="",
true_cfg=1.0,
timestep_to_start_cfg=1,
max_sequence_length=128,
):
flux_generator.t5.max_length = max_sequence_length
seed = int(seed)
if seed == -1:
seed = None
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
if opts.seed is None:
opts.seed = torch.Generator(device="cpu").seed()
t0 = time.perf_counter()
use_true_cfg = abs(true_cfg - 1.0) > 1e-2
if id_image is not None:
id_image = resize_numpy_image_long(id_image, 1024)
id_embeddings, uncond_id_embeddings = flux_generator.pulid_model.get_id_embedding(id_image, cal_uncond=use_true_cfg)
else:
id_embeddings = None
uncond_id_embeddings = None
# prepare input
x = get_noise(
1,
opts.height,
opts.width,
device=flux_generator.device,
dtype=torch.bfloat16,
seed=opts.seed,
)
timesteps = get_schedule(
opts.num_steps,
x.shape[-1] * x.shape[-2] // 4,
shift=True,
)
if flux_generator.offload:
flux_generator.t5, flux_generator.clip = flux_generator.t5.to(flux_generator.device), flux_generator.clip.to(flux_generator.device)
inp = prepare(t5=flux_generator.t5, clip=flux_generator.clip, img=x, prompt=opts.prompt)
inp_neg = prepare(t5=flux_generator.t5, clip=flux_generator.clip, img=x, prompt=neg_prompt) if use_true_cfg else None
# offload TEs to CPU, load model to gpu
if flux_generator.offload:
flux_generator.t5, flux_generator.clip = flux_generator.t5.cpu(), flux_generator.clip.cpu()
torch.cuda.empty_cache()
flux_generator.model = flux_generator.model.to(flux_generator.device)
# denoise initial noise
x = denoise(
flux_generator.model, **inp, timesteps=timesteps, guidance=opts.guidance, id=id_embeddings, id_weight=id_weight,
start_step=start_step, uncond_id=uncond_id_embeddings, true_cfg=true_cfg,
timestep_to_start_cfg=timestep_to_start_cfg,
neg_txt=inp_neg["txt"] if use_true_cfg else None,
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
neg_vec=inp_neg["vec"] if use_true_cfg else None,
)
# offload model, load autoencoder to gpu
if flux_generator.offload:
flux_generator.model.cpu()
torch.cuda.empty_cache()
flux_generator.ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), opts.height, opts.width)
with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16):
x = flux_generator.ae.decode(x)
if flux_generator.offload:
flux_generator.ae.decoder.cpu()
torch.cuda.empty_cache()
t1 = time.perf_counter()
# bring into PIL format
x = x.clamp(-1, 1)
x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
return img, str(opts.seed), flux_generator.pulid_model.debug_img_list
css = """
footer {
visibility: hidden;
}
"""
def create_demo(args, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False):
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
gr.Markdown("## AI ํฌํ†  ์ง€๋‹ˆ: ์šฐ์ฃผ")
gr.Markdown("### ์ด์šฉ ์•ˆ๋‚ด: 1) ์˜ˆ์‹œ์ค‘ ํ•˜๋‚˜๋ฅผ ์„ ํƒ. 2) ์นด๋ฉ”๋ผ ๋ฒ„ํŠผ์„ ํด๋ฆญํ•˜๊ณ  ์–ผ๊ตด์ด ๋ณด์ด๋ฉด ์นด๋ฉ”๋ผ ๋ฒ„ํŠผ ํด๋ฆญ. 3) '์ƒ์„ฑ' ๋ฒ„ํŠผ์„ ํด๋ฆญํ•˜๊ณ  ๊ธฐ๋‹ค๋ฆฌ๋ฉด ๋ฉ๋‹ˆ๋‹ค.")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="ํ”„๋กฌํ”„ํŠธ", value="์ดˆ์ƒํ™”, ์ƒ‰๊ฐ, ์˜ํ™”์ ")
id_image = gr.Image(label="ID ์ด๋ฏธ์ง€", sources=["webcam", "upload"], type="numpy")
generate_btn = gr.Button("์ƒ์„ฑ")
with gr.Column():
output_image = gr.Image(label="์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€")
with gr.Row():
with gr.Column():
gr.Markdown("### ์˜ˆ์‹œ")
all_examples = [
['์—ฌ์ž๊ฐ€ "PuLID for FLUX"๋ผ๊ณ  ์“ฐ์ธ ๋น›๋‚˜๋Š” ๋…น์ƒ‰ ํ‘œ์ง€ํŒ์„ ๋“ค๊ณ  ์žˆ๋‹ค', 'example_inputs/liuyifei.png'],
['์˜†๋ชจ์Šต ์ดˆ์ƒํ™”', 'example_inputs/liuyifei.png'],
['VR ๊ธฐ์ˆ  ๋ถ„์œ„๊ธฐ์˜ ํฐ ๋จธ๋ฆฌ ์—ฌ์„ฑ', 'example_inputs/liuyifei.png'],
['์–ด๋ฆฐ ์•„์ด๊ฐ€ ์•„์ด์Šคํฌ๋ฆผ์„ ๋จน๊ณ  ์žˆ๋‹ค', 'example_inputs/liuyifei.png'],
['๋‚จ์ž๊ฐ€ "PuLID for FLUX"๋ผ๊ณ  ์“ฐ์ธ ํ‘œ์ง€ํŒ์„ ๋“ค๊ณ  ์žˆ๋‹ค, ๊ฒจ์šธ, ๋ˆˆ ๋‚ด๋ฆผ', 'example_inputs/pengwei.jpg'],
['์ดˆ์ƒํ™”, ์ด›๋ถˆ ์กฐ๋ช…', 'example_inputs/pengwei.jpg'],
['25์„ธ ๋‚จ์„ฑ์˜ ์–ด๋‘์šด ํ”„๋กœํ•„ ์‚ฌ์ง„, ์ž…์—์„œ ์—ฐ๊ธฐ๊ฐ€ ๋‚˜์˜ค๊ณ  ์žˆ์Œ', 'example_inputs/pengwei.jpg'],
['๋ฏธ๊ตญ ๋งŒํ™” ์Šคํƒ€์ผ, ์†Œ๋…„ 1๋ช…', 'example_inputs/pengwei.jpg'],
['์ดˆ์ƒํ™”, ํ”ฝ์‚ฌ ์Šคํƒ€์ผ', 'example_inputs/pengwei.jpg'],
['์ดˆ์ƒํ™”, ์–ผ์Œ ์กฐ๊ฐ์ƒ', 'example_inputs/lecun.jpg'],
]
example_images = [example[1] for example in all_examples]
example_captions = [example[0] for example in all_examples]
gallery = gr.Gallery(
value=list(zip(example_images, example_captions)),
label="์˜ˆ์‹œ ๊ฐค๋Ÿฌ๋ฆฌ",
show_label=False,
elem_id="gallery",
columns=5,
rows=2,
object_fit="contain",
height="auto"
)
def fill_example(evt: gr.SelectData):
return [all_examples[evt.index][i] for i in [0, 1]]
gallery.select(
fill_example,
None,
[prompt, id_image],
)
generate_btn.click(
fn=generate_image,
inputs=[
gr.Slider(256, 1536, 896, step=16, visible=False), # width
gr.Slider(256, 1536, 1152, step=16, visible=False), # height
gr.Slider(1, 20, 20, step=1, visible=False), # num_steps
gr.Slider(0, 10, 0, step=1, visible=False), # start_step
gr.Slider(1.0, 10.0, 4, step=0.1, visible=False), # guidance
gr.Textbox(-1, visible=False), # seed
prompt,
id_image,
gr.Slider(0.0, 3.0, 1, step=0.05, visible=False), # id_weight
gr.Textbox("์ €ํ’ˆ์งˆ, ์ตœ์•…์˜ ํ’ˆ์งˆ, ํ…์ŠคํŠธ, ์„œ๋ช…, ์›Œํ„ฐ๋งˆํฌ, ์—ฌ๋ถ„์˜ ํŒ”๋‹ค๋ฆฌ", visible=False), # neg_prompt
gr.Slider(1.0, 10.0, 1, step=0.1, visible=False), # true_cfg
gr.Slider(0, 20, 1, step=1, visible=False), # timestep_to_start_cfg
gr.Slider(128, 512, 128, step=128, visible=False), # max_sequence_length
],
outputs=[output_image],
)
return demo
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="PuLID for FLUX.1-dev")
parser.add_argument("--name", type=str, default="flux-dev", choices=list('flux-dev'),
help="ํ˜„์žฌ๋Š” flux-dev๋งŒ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
help="์‚ฌ์šฉํ•  ๋””๋ฐ”์ด์Šค")
parser.add_argument("--offload", action="store_true", help="์‚ฌ์šฉํ•˜์ง€ ์•Š์„ ๋•Œ ๋ชจ๋ธ์„ CPU๋กœ ์˜ฎ๊น๋‹ˆ๋‹ค")
parser.add_argument("--port", type=int, default=8080, help="์‚ฌ์šฉํ•  ํฌํŠธ")
parser.add_argument("--dev", action='store_true', help="๊ฐœ๋ฐœ ๋ชจ๋“œ")
parser.add_argument("--pretrained_model", type=str, help='๊ฐœ๋ฐœ์šฉ')
args = parser.parse_args()
import huggingface_hub
huggingface_hub.login(os.getenv('HF_TOKEN'))
demo = create_demo(args, args.name, args.device, args.offload)
demo.launch()