|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Union |
|
|
|
import cv2 |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from controlnet_union import ControlNetModel_Union |
|
|
|
|
|
def latents_to_rgb(latents): |
|
weights = ((60, -60, 25, -70), (60, -5, 15, -50), (60, 10, -5, -35)) |
|
|
|
weights_tensor = torch.t( |
|
torch.tensor(weights, dtype=latents.dtype).to(latents.device) |
|
) |
|
biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to( |
|
latents.device |
|
) |
|
rgb_tensor = torch.einsum( |
|
"...lxy,lr -> ...rxy", latents, weights_tensor |
|
) + biases_tensor.unsqueeze(-1).unsqueeze(-1) |
|
image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy() |
|
image_array = image_array.transpose(1, 2, 0) |
|
|
|
denoised_image = cv2.fastNlMeansDenoisingColored(image_array, None, 10, 10, 7, 21) |
|
blurred_image = cv2.GaussianBlur(denoised_image, (5, 5), 0) |
|
final_image = PIL.Image.fromarray(blurred_image) |
|
|
|
width, height = final_image.size |
|
final_image = final_image.resize( |
|
(width * 8, height * 8), PIL.Image.Resampling.LANCZOS |
|
) |
|
|
|
return final_image |
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
**kwargs, |
|
): |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
|
|
return timesteps, num_inference_steps |
|
|
|
|
|
class StableDiffusionXLFillPipeline(DiffusionPipeline, StableDiffusionMixin): |
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" |
|
_optional_components = [ |
|
"tokenizer", |
|
"tokenizer_2", |
|
"text_encoder", |
|
"text_encoder_2", |
|
] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
text_encoder_2: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
tokenizer_2: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
controlnet: ControlNetModel_Union, |
|
scheduler: KarrasDiffusionSchedulers, |
|
force_zeros_for_empty_prompt: bool = True, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
unet=unet, |
|
controlnet=controlnet, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True |
|
) |
|
self.control_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, |
|
do_convert_rgb=True, |
|
do_normalize=False, |
|
) |
|
|
|
self.register_to_config( |
|
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt |
|
) |
|
|
|
def encode_prompt( |
|
self, |
|
prompt: str, |
|
device: Optional[torch.device] = None, |
|
do_classifier_free_guidance: bool = True, |
|
): |
|
device = device or self._execution_device |
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
|
if prompt is not None: |
|
batch_size = len(prompt) |
|
|
|
|
|
tokenizers = ( |
|
[self.tokenizer, self.tokenizer_2] |
|
if self.tokenizer is not None |
|
else [self.tokenizer_2] |
|
) |
|
text_encoders = ( |
|
[self.text_encoder, self.text_encoder_2] |
|
if self.text_encoder is not None |
|
else [self.text_encoder_2] |
|
) |
|
|
|
prompt_2 = prompt |
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 |
|
|
|
|
|
prompt_embeds_list = [] |
|
prompts = [prompt, prompt_2] |
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): |
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
|
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(device), output_hidden_states=True |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
|
|
|
|
zero_out_negative_prompt = True |
|
negative_prompt_embeds = None |
|
negative_pooled_prompt_embeds = None |
|
|
|
if do_classifier_free_guidance and zero_out_negative_prompt: |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds) |
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) |
|
elif do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = "" |
|
negative_prompt_2 = negative_prompt |
|
|
|
|
|
negative_prompt = ( |
|
batch_size * [negative_prompt] |
|
if isinstance(negative_prompt, str) |
|
else negative_prompt |
|
) |
|
negative_prompt_2 = ( |
|
batch_size * [negative_prompt_2] |
|
if isinstance(negative_prompt_2, str) |
|
else negative_prompt_2 |
|
) |
|
|
|
uncond_tokens: List[str] |
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = [negative_prompt, negative_prompt_2] |
|
|
|
negative_prompt_embeds_list = [] |
|
for negative_prompt, tokenizer, text_encoder in zip( |
|
uncond_tokens, tokenizers, text_encoders |
|
): |
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = tokenizer( |
|
negative_prompt, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
negative_prompt_embeds = text_encoder( |
|
uncond_input.input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] |
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, 1, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * 1, seq_len, -1) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
if self.text_encoder_2 is not None: |
|
negative_prompt_embeds = negative_prompt_embeds.to( |
|
dtype=self.text_encoder_2.dtype, device=device |
|
) |
|
else: |
|
negative_prompt_embeds = negative_prompt_embeds.to( |
|
dtype=self.unet.dtype, device=device |
|
) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, 1, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view( |
|
batch_size * 1, seq_len, -1 |
|
) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, 1).view(bs_embed * 1, -1) |
|
if do_classifier_free_guidance: |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat( |
|
1, 1 |
|
).view(bs_embed * 1, -1) |
|
|
|
return ( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) |
|
|
|
def check_inputs( |
|
self, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
image, |
|
controlnet_conditioning_scale=1.0, |
|
): |
|
if prompt_embeds is None: |
|
raise ValueError( |
|
"Provide `prompt_embeds`. Cannot leave `prompt_embeds` undefined." |
|
) |
|
|
|
if negative_prompt_embeds is None: |
|
raise ValueError( |
|
"Provide `negative_prompt_embeds`. Cannot leave `negative_prompt_embeds` undefined." |
|
) |
|
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
) |
|
|
|
|
|
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( |
|
self.controlnet, torch._dynamo.eval_frame.OptimizedModule |
|
) |
|
if ( |
|
isinstance(self.controlnet, ControlNetModel_Union) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, ControlNetModel_Union) |
|
): |
|
if not isinstance(image, PIL.Image.Image): |
|
raise TypeError( |
|
f"image must be passed and has to be a PIL image, but is {type(image)}" |
|
) |
|
|
|
else: |
|
assert False |
|
|
|
|
|
if ( |
|
isinstance(self.controlnet, ControlNetModel_Union) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, ControlNetModel_Union) |
|
): |
|
if not isinstance(controlnet_conditioning_scale, float): |
|
raise TypeError( |
|
"For single controlnet: `controlnet_conditioning_scale` must be type `float`." |
|
) |
|
else: |
|
assert False |
|
|
|
def prepare_image(self, image, device, dtype, do_classifier_free_guidance=False): |
|
image = self.control_image_processor.preprocess(image).to(dtype=torch.float32) |
|
|
|
image_batch_size = image.shape[0] |
|
|
|
image = image.repeat_interleave(image_batch_size, dim=0) |
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if do_classifier_free_guidance: |
|
image = torch.cat([image] * 2) |
|
|
|
return image |
|
|
|
def prepare_latents( |
|
self, batch_size, num_channels_latents, height, width, dtype, device |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
|
|
latents = randn_tensor(shape, device=device, dtype=dtype) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt_embeds: torch.Tensor, |
|
negative_prompt_embeds: torch.Tensor, |
|
pooled_prompt_embeds: torch.Tensor, |
|
negative_pooled_prompt_embeds: torch.Tensor, |
|
image: PipelineImageInput = None, |
|
num_inference_steps: int = 8, |
|
guidance_scale: float = 1.5, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
): |
|
|
|
self.check_inputs( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
image, |
|
controlnet_conditioning_scale, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
|
|
|
|
batch_size = 1 |
|
device = self._execution_device |
|
|
|
|
|
if isinstance(self.controlnet, ControlNetModel_Union): |
|
image = self.prepare_image( |
|
image=image, |
|
device=device, |
|
dtype=self.controlnet.dtype, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
) |
|
height, width = image.shape[-2:] |
|
else: |
|
assert False |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, num_inference_steps, device |
|
) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
) |
|
|
|
|
|
add_text_embeds = pooled_prompt_embeds |
|
|
|
add_time_ids = negative_add_time_ids = torch.tensor( |
|
image.shape[-2:] + torch.Size([0, 0]) + image.shape[-2:] |
|
).unsqueeze(0) |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat( |
|
[negative_pooled_prompt_embeds, add_text_embeds], dim=0 |
|
) |
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size, 1) |
|
|
|
controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0] |
|
union_control_type = ( |
|
torch.Tensor([0, 0, 0, 0, 0, 0, 1, 0]) |
|
.to(device, dtype=prompt_embeds.dtype) |
|
.repeat(batch_size * 2, 1) |
|
) |
|
|
|
added_cond_kwargs = { |
|
"text_embeds": add_text_embeds, |
|
"time_ids": add_time_ids, |
|
"control_type": union_control_type, |
|
} |
|
|
|
controlnet_prompt_embeds = prompt_embeds |
|
controlnet_added_cond_kwargs = added_cond_kwargs |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * 2) |
|
if self.do_classifier_free_guidance |
|
else latents |
|
) |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
|
|
|
|
control_model_input = latent_model_input |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=controlnet_prompt_embeds, |
|
controlnet_cond_list=controlnet_image_list, |
|
conditioning_scale=controlnet_conditioning_scale, |
|
guess_mode=False, |
|
added_cond_kwargs=controlnet_added_cond_kwargs, |
|
return_dict=False, |
|
) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=None, |
|
cross_attention_kwargs={}, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, return_dict=False |
|
)[0] |
|
|
|
if i == 2: |
|
prompt_embeds = prompt_embeds[-1:] |
|
add_text_embeds = add_text_embeds[-1:] |
|
add_time_ids = add_time_ids[-1:] |
|
union_control_type = union_control_type[-1:] |
|
|
|
added_cond_kwargs = { |
|
"text_embeds": add_text_embeds, |
|
"time_ids": add_time_ids, |
|
"control_type": union_control_type, |
|
} |
|
|
|
controlnet_prompt_embeds = prompt_embeds |
|
controlnet_added_cond_kwargs = added_cond_kwargs |
|
|
|
image = image[-1:] |
|
controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0] |
|
|
|
self._guidance_scale = 0.0 |
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
yield latents_to_rgb(latents) |
|
|
|
latents = latents / self.vae.config.scaling_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image)[0] |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
yield image |
|
|