Spaces:
Running
Running
import gradio as gr | |
import requests | |
import pandas as pd | |
import plotly.graph_objects as go | |
from datetime import datetime | |
import os | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# κ΄μ¬ μ€νμ΄μ€ URL 리μ€νΈμ μ 보 | |
target_spaces = { | |
"ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama", | |
"ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D", | |
"fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX", | |
"fantos/flx8lora": "https://huggingface.co/spaces/fantos/flx8lora", | |
"ginigen/Canvas": "https://huggingface.co/spaces/ginigen/Canvas", | |
"fantaxy/erotica": "https://huggingface.co/spaces/fantaxy/erotica", | |
"ginipick/time-machine": "https://huggingface.co/spaces/ginipick/time-machine", | |
"aiqcamp/FLUX-VisionReply": "https://huggingface.co/spaces/aiqcamp/FLUX-VisionReply", | |
"openfree/Tetris-Game": "https://huggingface.co/spaces/openfree/Tetris-Game", | |
"openfree/everychat": "https://huggingface.co/spaces/openfree/everychat", | |
"VIDraft/mouse1": "https://huggingface.co/spaces/VIDraft/mouse1", | |
"kolaslab/alpha-go": "https://huggingface.co/spaces/kolaslab/alpha-go", | |
"ginipick/text3d": "https://huggingface.co/spaces/ginipick/text3d", | |
"openfree/trending-board": "https://huggingface.co/spaces/openfree/trending-board", | |
"cutechicken/tankwar": "https://huggingface.co/spaces/cutechicken/tankwar", | |
"openfree/game-jewel": "https://huggingface.co/spaces/openfree/game-jewel", | |
"VIDraft/mouse-chat": "https://huggingface.co/spaces/VIDraft/mouse-chat", | |
"ginipick/AccDiffusion": "https://huggingface.co/spaces/ginipick/AccDiffusion", | |
"aiqtech/Particle-Accelerator-Simulation": "https://huggingface.co/spaces/aiqtech/Particle-Accelerator-Simulation", | |
"openfree/GiniGEN": "https://huggingface.co/spaces/openfree/GiniGEN", | |
"kolaslab/3DAudio-Spectrum-Analyzer": "https://huggingface.co/spaces/kolaslab/3DAudio-Spectrum-Analyzer", | |
"openfree/trending-news-24": "https://huggingface.co/spaces/openfree/trending-news-24", | |
"ginipick/Realtime-FLUX": "https://huggingface.co/spaces/ginipick/Realtime-FLUX", | |
"VIDraft/prime-number": "https://huggingface.co/spaces/VIDraft/prime-number", | |
"kolaslab/zombie-game": "https://huggingface.co/spaces/kolaslab/zombie-game", | |
"fantos/miro-game": "https://huggingface.co/spaces/fantos/miro-game", | |
"kolaslab/shooting": "https://huggingface.co/spaces/kolaslab/shooting", | |
"VIDraft/Mouse-Hackathon": "https://huggingface.co/spaces/VIDraft/Mouse-Hackathon", | |
"upstage/open-ko-llm-leaderboard": "https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard", | |
"LGAI-EXAONE/EXAONE-3.5-Instruct-Demo": "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo", | |
"NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena" | |
} | |
def get_trending_spaces(search_query="", sort_by="rank", progress=gr.Progress()): | |
"""νΈλ λ© μ€νμ΄μ€ κ°μ Έμ€κΈ°""" | |
url = "https://huggingface.co/api/spaces" | |
try: | |
progress(0, desc="Fetching spaces data...") | |
params = { | |
'full': 'true', | |
'limit': 1000 # μΆ©λΆν μμ μ€νμ΄μ€λ₯Ό κ°μ Έμ€κΈ° μν΄ μ¦κ° | |
} | |
response = requests.get(url, params=params) | |
response.raise_for_status() | |
all_spaces = response.json() | |
# target_spacesμ μλ μ€νμ΄μ€λ§ νν°λ§ | |
spaces = [space for space in all_spaces if space.get('id', '') in target_spaces] | |
progress(0.1, desc="Creating visualization...") | |
# νΈλ λ μκ°ν μμ± | |
plot = create_trend_visualization(spaces) | |
progress(0.4, desc="Creating space cards...") | |
# μ€νμ΄μ€ μΉ΄λ HTML μμ± | |
html_content = """ | |
<div style='padding: 20px; background: #f5f5f5;'> | |
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'> | |
""" | |
for idx, space in enumerate(spaces): | |
space_id = space.get('id', '') | |
likes = space.get('likes', 0) | |
title = space.get('title', 'No Title') | |
description = space.get('description', 'No Description')[:100] | |
html_content += f""" | |
<div style=' | |
background: white; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
transition: transform 0.2s; | |
'> | |
<h3 style='color: #34495e;'>#{idx + 1} - {space_id}</h3> | |
<p style='color: #7f8c8d;'>π Likes: {likes}</p> | |
<p style='color: #2c3e50;'>{title}</p> | |
<p style='color: #7f8c8d; font-size: 0.9em;'>{description}...</p> | |
<a href='{target_spaces[space_id]}' | |
target='_blank' | |
style=' | |
display: inline-block; | |
padding: 8px 16px; | |
background: #3498db; | |
color: white; | |
text-decoration: none; | |
border-radius: 5px; | |
transition: background 0.3s; | |
'> | |
Visit Space π | |
</a> | |
</div> | |
""" | |
progress((0.4 + 0.5 * idx/len(spaces)), desc=f"Loading space {idx+1}/{len(spaces)}...") | |
html_content += "</div></div>" | |
# λ°μ΄ν° ν μ΄λΈ μμ± | |
df = create_data_table(spaces) | |
progress(1.0, desc="Complete!") | |
return plot, html_content, df | |
except Exception as e: | |
error_html = f'<div style="color: red; padding: 20px;">Error: {str(e)}</div>' | |
error_plot = create_error_plot() | |
return error_plot, error_html, pd.DataFrame() | |
def create_trend_visualization(spaces_data): | |
if not spaces_data: | |
return create_error_plot() | |
fig = go.Figure() | |
# μμ λ°μ΄ν° μ€λΉ | |
ranks = [] | |
for idx, space in enumerate(spaces_data, 1): | |
space_id = space.get('id', '') | |
if space_id in target_spaces: | |
ranks.append({ | |
'id': space_id, | |
'rank': idx, | |
'likes': space.get('likes', 0), | |
'title': space.get('title', 'N/A'), | |
'views': space.get('views', 0) | |
}) | |
if not ranks: | |
return create_error_plot() | |
# μμλ³λ‘ μ λ ¬ | |
ranks.sort(key=lambda x: x['rank']) | |
# νλ‘― λ°μ΄ν° μμ± | |
ids = [r['id'] for r in ranks] | |
rank_values = [r['rank'] for r in ranks] | |
likes = [r['likes'] for r in ranks] | |
views = [r['views'] for r in ranks] | |
# λ§λ κ·Έλν μμ± | |
fig.add_trace(go.Bar( | |
x=ids, | |
y=rank_values, | |
text=[f"Rank: {r}<br>Likes: {l}<br>Views: {v}" for r, l, v in zip(rank_values, likes, views)], | |
textposition='auto', | |
marker_color='rgb(158,202,225)', | |
opacity=0.8 | |
)) | |
fig.update_layout( | |
title={ | |
'text': 'Current Trending Ranks (All Target Spaces)', | |
'y':0.95, | |
'x':0.5, | |
'xanchor': 'center', | |
'yanchor': 'top' | |
}, | |
xaxis_title='Space ID', | |
yaxis_title='Trending Rank', | |
yaxis_autorange='reversed', | |
height=800, | |
showlegend=False, | |
template='plotly_white', | |
xaxis_tickangle=-45 | |
) | |
return fig | |
# ν ν°μ΄ μλ κ²½μ°λ₯Ό μν λ체 ν¨μ | |
def get_trending_spaces_without_token(): | |
try: | |
url = "https://huggingface.co/api/spaces" | |
params = { | |
'sort': 'likes', | |
'direction': -1, | |
'limit': 1000, | |
'full': 'true' | |
} | |
response = requests.get(url, params=params) | |
if response.status_code == 200: | |
return response.json() | |
else: | |
print(f"API μμ² μ€ν¨ (ν ν° μμ): {response.status_code}") | |
print(f"Response: {response.text}") | |
return None | |
except Exception as e: | |
print(f"API νΈμΆ μ€ μλ¬ λ°μ (ν ν° μμ): {str(e)}") | |
return None | |
# API ν ν° μ€μ λ° ν¨μ μ ν | |
if not HF_TOKEN: | |
get_trending_spaces = get_trending_spaces_without_token | |
def create_error_plot(): | |
fig = go.Figure() | |
fig.add_annotation( | |
text="λ°μ΄ν°λ₯Ό λΆλ¬μ¬ μ μμ΅λλ€.\n(API μΈμ¦μ΄ νμν©λλ€)", | |
xref="paper", | |
yref="paper", | |
x=0.5, | |
y=0.5, | |
showarrow=False, | |
font=dict(size=20) | |
) | |
fig.update_layout( | |
title="Error Loading Data", | |
height=400 | |
) | |
return fig | |
def create_space_info_html(spaces_data): | |
if not spaces_data: | |
return "<div style='padding: 20px;'><h2>λ°μ΄ν°λ₯Ό λΆλ¬μ€λλ° μ€ν¨νμ΅λλ€.</h2></div>" | |
html_content = """ | |
<div style='padding: 20px;'> | |
<h2 style='color: #2c3e50;'>Current Trending Rankings</h2> | |
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'> | |
""" | |
# λͺ¨λ target spacesλ₯Ό ν¬ν¨νλλ‘ μμ | |
for space_id in target_spaces.keys(): | |
space_info = next((s for s in spaces_data if s.get('id') == space_id), None) | |
if space_info: | |
rank = next((idx for idx, s in enumerate(spaces_data, 1) if s.get('id') == space_id), 'N/A') | |
html_content += f""" | |
<div style=' | |
background: white; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
transition: transform 0.2s; | |
'> | |
<h3 style='color: #34495e;'>#{rank} - {space_id}</h3> | |
<p style='color: #7f8c8d;'>π Likes: {space_info.get('likes', 'N/A')}</p> | |
<p style='color: #7f8c8d;'>π Views: {space_info.get('views', 'N/A')}</p> | |
<p style='color: #2c3e50;'>{space_info.get('title', 'N/A')}</p> | |
<p style='color: #7f8c8d; font-size: 0.9em;'>{space_info.get('description', 'N/A')[:100]}...</p> | |
<a href='{target_spaces[space_id]}' | |
target='_blank' | |
style=' | |
display: inline-block; | |
padding: 8px 16px; | |
background: #3498db; | |
color: white; | |
text-decoration: none; | |
border-radius: 5px; | |
transition: background 0.3s; | |
'> | |
Visit Space π | |
</a> | |
</div> | |
""" | |
else: | |
html_content += f""" | |
<div style=' | |
background: #f8f9fa; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
'> | |
<h3 style='color: #34495e;'>{space_id}</h3> | |
<p style='color: #7f8c8d;'>Not in trending</p> | |
<a href='{target_spaces[space_id]}' | |
target='_blank' | |
style=' | |
display: inline-block; | |
padding: 8px 16px; | |
background: #95a5a6; | |
color: white; | |
text-decoration: none; | |
border-radius: 5px; | |
'> | |
Visit Space π | |
</a> | |
</div> | |
""" | |
html_content += "</div></div>" | |
return html_content | |
def create_data_table(spaces_data): | |
if not spaces_data: | |
return pd.DataFrame() | |
rows = [] | |
for idx, space in enumerate(spaces_data, 1): | |
space_id = space.get('id', '') | |
if space_id in target_spaces: | |
rows.append({ | |
'Rank': idx, | |
'Space ID': space_id, | |
'Likes': space.get('likes', 'N/A'), | |
'Title': space.get('title', 'N/A'), | |
'URL': target_spaces[space_id] | |
}) | |
return pd.DataFrame(rows) | |
def refresh_data(): | |
spaces_data = get_trending_spaces() | |
if spaces_data: | |
plot = create_trend_visualization(spaces_data) | |
info = create_space_info_html(spaces_data) | |
df = create_data_table(spaces_data) | |
return plot, info, df | |
else: | |
return create_error_plot(), "<div>API μΈμ¦μ΄ νμν©λλ€.</div>", pd.DataFrame() | |
# Gradio μΈν°νμ΄μ€ μμ± | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# π€ HuggingFace Spaces Trending Analysis | |
μ€μκ°μΌλ‘ Hugging Face Spacesμ νΈλ λ© μμλ₯Ό λΆμν©λλ€. | |
""") | |
with gr.Tab("Trending Analysis"): | |
plot_output = gr.Plot() | |
info_output = gr.HTML() | |
with gr.Tab("Export Data"): | |
df_output = gr.DataFrame() | |
refresh_btn = gr.Button("π Refresh Data", variant="primary") | |
def refresh_data(): | |
return get_trending_spaces() | |
refresh_btn.click( | |
refresh_data, | |
outputs=[plot_output, info_output, df_output] | |
) | |
# μ΄κΈ° λ°μ΄ν° λ‘λ | |
initial_plot, initial_info, initial_df = get_trending_spaces() | |
plot_output.value = initial_plot | |
info_output.value = initial_info | |
df_output.value = initial_df | |
# Gradio μ± μ€ν | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False | |
) |