Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -72,12 +72,10 @@ pipe_controlnet = FluxControlNetPipeline(
|
|
72 |
tokenizer_2=pipe.tokenizer_2,
|
73 |
transformer=pipe.transformer, # unet 대신 transformer 사용
|
74 |
controlnet=controlnet,
|
75 |
-
scheduler=pipe.scheduler
|
|
|
76 |
).to(device)
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
MAX_SEED = 2**32 - 1
|
82 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
83 |
|
@@ -310,8 +308,8 @@ def remove_custom_lora(selected_indices, current_loras):
|
|
310 |
@spaces.GPU(duration=75)
|
311 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
312 |
print("Generating image...")
|
313 |
-
pipe.to(
|
314 |
-
generator = torch.Generator(device=
|
315 |
with calculateDuration("Generating image"):
|
316 |
# Generate image
|
317 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
@@ -329,8 +327,8 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
|
329 |
|
330 |
@spaces.GPU(duration=75)
|
331 |
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
332 |
-
pipe_i2i.to(
|
333 |
-
generator = torch.Generator(device=
|
334 |
image_input = load_image(image_input_path)
|
335 |
final_image = pipe_i2i(
|
336 |
prompt=prompt_mash,
|
@@ -414,7 +412,7 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
414 |
# Generate image
|
415 |
if image_input is not None:
|
416 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
417 |
-
|
418 |
else:
|
419 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
420 |
# Consume the generator to get the final image
|
@@ -518,8 +516,8 @@ def process_input(input_image, upscale_factor, **kwargs):
|
|
518 |
|
519 |
return input_image.resize((w, h)), w_original, h_original, was_resized
|
520 |
|
521 |
-
@spaces.GPU
|
522 |
-
def
|
523 |
seed,
|
524 |
randomize_seed,
|
525 |
input_image,
|
@@ -561,8 +559,8 @@ def infer(
|
|
561 |
# resize to target desired size
|
562 |
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
563 |
image.save("output.jpg")
|
564 |
-
# convert to
|
565 |
-
return [true_input_image, image
|
566 |
|
567 |
css = '''
|
568 |
#gen_btn{height: 100%}
|
@@ -592,6 +590,7 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
592 |
|
593 |
loras_state = gr.State(loras)
|
594 |
selected_indices = gr.State([])
|
|
|
595 |
with gr.Tab("Generate"):
|
596 |
with gr.Row():
|
597 |
with gr.Column(scale=3):
|
@@ -660,44 +659,51 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
660 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
661 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
662 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
663 |
gallery.select(
|
664 |
-
update_selection,
|
665 |
inputs=[selected_indices, loras_state, width, height],
|
666 |
-
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2]
|
|
|
667 |
remove_button_1.click(
|
668 |
-
remove_lora_1,
|
669 |
inputs=[selected_indices, loras_state],
|
670 |
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
671 |
)
|
672 |
remove_button_2.click(
|
673 |
-
remove_lora_2,
|
674 |
inputs=[selected_indices, loras_state],
|
675 |
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
676 |
)
|
677 |
randomize_button.click(
|
678 |
-
randomize_loras,
|
679 |
inputs=[selected_indices, loras_state],
|
680 |
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, prompt]
|
681 |
)
|
682 |
add_custom_lora_button.click(
|
683 |
-
add_custom_lora,
|
684 |
inputs=[custom_lora, selected_indices, loras_state],
|
685 |
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
686 |
)
|
687 |
remove_custom_lora_button.click(
|
688 |
-
remove_custom_lora,
|
689 |
inputs=[selected_indices, loras_state],
|
690 |
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
691 |
)
|
692 |
-
|
693 |
-
|
694 |
-
fn=run_lora,
|
695 |
-
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
|
696 |
-
outputs=[result, seed, progress_bar]
|
697 |
-
).then( # Update the history gallery
|
698 |
-
fn=lambda x, history: update_history(x, history),
|
699 |
inputs=[result, history_gallery],
|
700 |
-
outputs=history_gallery
|
701 |
)
|
702 |
|
703 |
with gr.Tab("Upscale"):
|
@@ -737,8 +743,9 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
737 |
with gr.Row():
|
738 |
upscale_button = gr.Button("Upscale", variant="primary")
|
739 |
|
|
|
740 |
upscale_button.click(
|
741 |
-
|
742 |
inputs=[
|
743 |
seed_upscale,
|
744 |
randomize_seed_upscale,
|
@@ -752,3 +759,4 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
752 |
|
753 |
app.queue()
|
754 |
app.launch()
|
|
|
|
72 |
tokenizer_2=pipe.tokenizer_2,
|
73 |
transformer=pipe.transformer, # unet 대신 transformer 사용
|
74 |
controlnet=controlnet,
|
75 |
+
scheduler=pipe.scheduler,
|
76 |
+
torch_dtype=dtype
|
77 |
).to(device)
|
78 |
|
|
|
|
|
|
|
79 |
MAX_SEED = 2**32 - 1
|
80 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
81 |
|
|
|
308 |
@spaces.GPU(duration=75)
|
309 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
310 |
print("Generating image...")
|
311 |
+
pipe.to(device)
|
312 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
313 |
with calculateDuration("Generating image"):
|
314 |
# Generate image
|
315 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
|
|
327 |
|
328 |
@spaces.GPU(duration=75)
|
329 |
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
330 |
+
pipe_i2i.to(device)
|
331 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
332 |
image_input = load_image(image_input_path)
|
333 |
final_image = pipe_i2i(
|
334 |
prompt=prompt_mash,
|
|
|
412 |
# Generate image
|
413 |
if image_input is not None:
|
414 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
415 |
+
return final_image, seed, gr.update(visible=False)
|
416 |
else:
|
417 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
418 |
# Consume the generator to get the final image
|
|
|
516 |
|
517 |
return input_image.resize((w, h)), w_original, h_original, was_resized
|
518 |
|
519 |
+
@spaces.GPU(duration=75)
|
520 |
+
def infer_upscale(
|
521 |
seed,
|
522 |
randomize_seed,
|
523 |
input_image,
|
|
|
559 |
# resize to target desired size
|
560 |
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
561 |
image.save("output.jpg")
|
562 |
+
# convert to PIL Image
|
563 |
+
return [true_input_image, image]
|
564 |
|
565 |
css = '''
|
566 |
#gen_btn{height: 100%}
|
|
|
590 |
|
591 |
loras_state = gr.State(loras)
|
592 |
selected_indices = gr.State([])
|
593 |
+
|
594 |
with gr.Tab("Generate"):
|
595 |
with gr.Row():
|
596 |
with gr.Column(scale=3):
|
|
|
659 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
660 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
661 |
|
662 |
+
# 이벤트 핸들러 설정
|
663 |
+
generate_button.click(
|
664 |
+
fn=run_lora,
|
665 |
+
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
|
666 |
+
outputs=[result, seed, progress_bar]
|
667 |
+
)
|
668 |
+
prompt.submit(
|
669 |
+
fn=run_lora,
|
670 |
+
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
|
671 |
+
outputs=[result, seed, progress_bar]
|
672 |
+
)
|
673 |
gallery.select(
|
674 |
+
fn=update_selection,
|
675 |
inputs=[selected_indices, loras_state, width, height],
|
676 |
+
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2]
|
677 |
+
)
|
678 |
remove_button_1.click(
|
679 |
+
fn=remove_lora_1,
|
680 |
inputs=[selected_indices, loras_state],
|
681 |
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
682 |
)
|
683 |
remove_button_2.click(
|
684 |
+
fn=remove_lora_2,
|
685 |
inputs=[selected_indices, loras_state],
|
686 |
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
687 |
)
|
688 |
randomize_button.click(
|
689 |
+
fn=randomize_loras,
|
690 |
inputs=[selected_indices, loras_state],
|
691 |
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, prompt]
|
692 |
)
|
693 |
add_custom_lora_button.click(
|
694 |
+
fn=add_custom_lora,
|
695 |
inputs=[custom_lora, selected_indices, loras_state],
|
696 |
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
697 |
)
|
698 |
remove_custom_lora_button.click(
|
699 |
+
fn=remove_custom_lora,
|
700 |
inputs=[selected_indices, loras_state],
|
701 |
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
702 |
)
|
703 |
+
history_gallery.load(
|
704 |
+
fn=update_history,
|
|
|
|
|
|
|
|
|
|
|
705 |
inputs=[result, history_gallery],
|
706 |
+
outputs=history_gallery
|
707 |
)
|
708 |
|
709 |
with gr.Tab("Upscale"):
|
|
|
743 |
with gr.Row():
|
744 |
upscale_button = gr.Button("Upscale", variant="primary")
|
745 |
|
746 |
+
# 업스케일 버튼 이벤트 핸들러
|
747 |
upscale_button.click(
|
748 |
+
fn=infer_upscale,
|
749 |
inputs=[
|
750 |
seed_upscale,
|
751 |
randomize_seed_upscale,
|
|
|
759 |
|
760 |
app.queue()
|
761 |
app.launch()
|
762 |
+
|