Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -43,11 +43,12 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
43 |
|
44 |
# 공통 FLUX 모델 로드
|
45 |
base_model = "black-forest-labs/FLUX.1-dev"
|
46 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype)
|
|
|
47 |
|
48 |
# LoRA를 위한 설정
|
49 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
50 |
-
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype)
|
51 |
|
52 |
# Image-to-Image 파이프라인 설정
|
53 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
@@ -58,30 +59,26 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
58 |
tokenizer=pipe.tokenizer,
|
59 |
text_encoder_2=pipe.text_encoder_2,
|
60 |
tokenizer_2=pipe.tokenizer_2,
|
61 |
-
torch_dtype=dtype
|
62 |
-
|
|
|
63 |
|
64 |
# Upscale을 위한 ControlNet 설정
|
65 |
controlnet = FluxControlNetModel.from_pretrained(
|
66 |
-
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
67 |
-
)
|
68 |
|
69 |
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
70 |
pipe_upscale = FluxControlNetPipeline(
|
71 |
vae=pipe.vae,
|
72 |
text_encoder=pipe.text_encoder,
|
73 |
-
text_encoder_2=pipe.text_encoder_2,
|
74 |
tokenizer=pipe.tokenizer,
|
75 |
-
tokenizer_2=pipe.tokenizer_2,
|
76 |
transformer=pipe.transformer,
|
77 |
scheduler=pipe.scheduler,
|
78 |
controlnet=controlnet
|
79 |
-
)
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
|
86 |
MAX_SEED = 2**32 - 1
|
87 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
@@ -586,16 +583,14 @@ def infer_upscale(
|
|
586 |
gr.Info("Upscaling image...")
|
587 |
# 모든 텐서를 동일한 디바이스로 이동
|
588 |
pipe_upscale.to(device)
|
589 |
-
control_image = control_image.to(device)
|
590 |
|
591 |
image = pipe_upscale(
|
592 |
prompt="",
|
593 |
-
|
594 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
595 |
num_inference_steps=num_inference_steps,
|
596 |
guidance_scale=3.5,
|
597 |
-
height=control_image.size[1],
|
598 |
-
width=control_image.size[0],
|
599 |
generator=generator,
|
600 |
).images[0]
|
601 |
|
@@ -610,11 +605,11 @@ def infer_upscale(
|
|
610 |
return image, seed
|
611 |
except Exception as e:
|
612 |
print(f"Error in infer_upscale: {str(e)}")
|
613 |
-
return
|
614 |
|
615 |
def check_upscale_input(input_image, *args):
|
616 |
if input_image is None:
|
617 |
-
|
618 |
return input_image, *args
|
619 |
|
620 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
|
|
|
43 |
|
44 |
# 공통 FLUX 모델 로드
|
45 |
base_model = "black-forest-labs/FLUX.1-dev"
|
46 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, low_cpu_mem_usage=True)
|
47 |
+
pipe.to(device)
|
48 |
|
49 |
# LoRA를 위한 설정
|
50 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype, low_cpu_mem_usage=True)
|
51 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype, low_cpu_mem_usage=True)
|
52 |
|
53 |
# Image-to-Image 파이프라인 설정
|
54 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
|
59 |
tokenizer=pipe.tokenizer,
|
60 |
text_encoder_2=pipe.text_encoder_2,
|
61 |
tokenizer_2=pipe.tokenizer_2,
|
62 |
+
torch_dtype=dtype,
|
63 |
+
low_cpu_mem_usage=True
|
64 |
+
)
|
65 |
|
66 |
# Upscale을 위한 ControlNet 설정
|
67 |
controlnet = FluxControlNetModel.from_pretrained(
|
68 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True
|
69 |
+
)
|
70 |
|
71 |
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
72 |
pipe_upscale = FluxControlNetPipeline(
|
73 |
vae=pipe.vae,
|
74 |
text_encoder=pipe.text_encoder,
|
75 |
+
text_encoder_2=pipe.text_encoder_2,
|
76 |
tokenizer=pipe.tokenizer,
|
77 |
+
tokenizer_2=pipe.tokenizer_2,
|
78 |
transformer=pipe.transformer,
|
79 |
scheduler=pipe.scheduler,
|
80 |
controlnet=controlnet
|
81 |
+
)
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
MAX_SEED = 2**32 - 1
|
84 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
|
|
583 |
gr.Info("Upscaling image...")
|
584 |
# 모든 텐서를 동일한 디바이스로 이동
|
585 |
pipe_upscale.to(device)
|
586 |
+
control_image = torch.from_numpy(np.array(control_image)).permute(2, 0, 1).float().to(device)
|
587 |
|
588 |
image = pipe_upscale(
|
589 |
prompt="",
|
590 |
+
image=control_image,
|
591 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
592 |
num_inference_steps=num_inference_steps,
|
593 |
guidance_scale=3.5,
|
|
|
|
|
594 |
generator=generator,
|
595 |
).images[0]
|
596 |
|
|
|
605 |
return image, seed
|
606 |
except Exception as e:
|
607 |
print(f"Error in infer_upscale: {str(e)}")
|
608 |
+
return gr.Error(f"Upscaling failed: {str(e)}"), seed
|
609 |
|
610 |
def check_upscale_input(input_image, *args):
|
611 |
if input_image is None:
|
612 |
+
return gr.Error("Please provide an input image for upscaling."), *args
|
613 |
return input_image, *args
|
614 |
|
615 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
|