Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import open_clip | |
| from .flamingo import Flamingo | |
| from .flamingo_lm import FlamingoLMMixin | |
| from .utils import extend_instance | |
| def create_model_and_transforms( | |
| clip_vision_encoder_path: str, | |
| clip_vision_encoder_pretrained: str, | |
| lang_encoder_path: str, | |
| tokenizer_path: str, | |
| cross_attn_every_n_layers: int = 1, | |
| use_local_files: bool = False, | |
| decoder_layers_attr_name: str = None, | |
| freeze_lm_embeddings: bool = False, | |
| **flamingo_kwargs, | |
| ): | |
| """ | |
| Initialize a Flamingo model from a pretrained vision encoder and language encoder. | |
| Appends special tokens to the tokenizer and freezes backbones. | |
| Args: | |
| clip_vision_encoder_path (str): path to pretrained clip model (e.g. "ViT-B-32") | |
| clip_vision_encoder_pretrained (str): name of pretraining dataset for clip model (e.g. "laion2b_s32b_b79k") | |
| lang_encoder_path (str): path to pretrained language encoder | |
| tokenizer_path (str): path to pretrained tokenizer | |
| cross_attn_every_n_layers (int, optional): determines how often to add a cross-attention layer. Defaults to 1. | |
| use_local_files (bool, optional): whether to use local files. Defaults to False. | |
| decoder_layers_attr_name (str, optional): name of the decoder layers attribute. Defaults to None. | |
| Returns: | |
| Flamingo: Flamingo model from pretrained vision and language encoders | |
| Image processor: Pipeline to preprocess input images | |
| Tokenizer: A tokenizer for the language model | |
| """ | |
| vision_encoder, _, image_processor = open_clip.create_model_and_transforms( | |
| clip_vision_encoder_path, pretrained=clip_vision_encoder_pretrained | |
| ) | |
| # set the vision encoder to output the visual features | |
| vision_encoder.visual.output_tokens = True | |
| text_tokenizer = AutoTokenizer.from_pretrained( | |
| tokenizer_path, | |
| local_files_only=use_local_files, | |
| trust_remote_code=True, | |
| ) | |
| # add Flamingo special tokens to the tokenizer | |
| text_tokenizer.add_special_tokens( | |
| {"additional_special_tokens": ["<|endofchunk|>", "<image>"]} | |
| ) | |
| if text_tokenizer.pad_token is None: | |
| # Issue: GPT models don't have a pad token, which we use to | |
| # modify labels for the loss. | |
| text_tokenizer.add_special_tokens({"pad_token": "<PAD>"}) | |
| lang_encoder = AutoModelForCausalLM.from_pretrained( | |
| lang_encoder_path, | |
| local_files_only=use_local_files, | |
| trust_remote_code=True, | |
| ) | |
| # hacks for MPT-1B, which doesn't have a get_input_embeddings method | |
| if "mpt-1b-redpajama-200b" in lang_encoder_path: | |
| class EmbeddingFnMixin: | |
| def get_input_embeddings(self): | |
| return self.transformer.wte | |
| def set_input_embeddings(self, new_embeddings): | |
| self.transformer.wte = new_embeddings | |
| extend_instance(lang_encoder, EmbeddingFnMixin) | |
| # convert LM to FlamingoLM | |
| extend_instance(lang_encoder, FlamingoLMMixin) | |
| if decoder_layers_attr_name is None: | |
| decoder_layers_attr_name = _infer_decoder_layers_attr_name(lang_encoder) | |
| lang_encoder.set_decoder_layers_attr_name(decoder_layers_attr_name) | |
| lang_encoder.resize_token_embeddings(len(text_tokenizer)) | |
| model = Flamingo( | |
| vision_encoder, | |
| lang_encoder, | |
| text_tokenizer.encode("<|endofchunk|>")[-1], | |
| text_tokenizer.encode("<image>")[-1], | |
| vis_dim=open_clip.get_model_config(clip_vision_encoder_path)["vision_cfg"][ | |
| "width" | |
| ], | |
| cross_attn_every_n_layers=cross_attn_every_n_layers, | |
| **flamingo_kwargs, | |
| ) | |
| # Freeze all parameters | |
| model.requires_grad_(False) | |
| assert sum(p.numel() for p in model.parameters() if p.requires_grad) == 0 | |
| # Unfreeze perceiver, gated_cross_attn_layers, and LM input embeddings | |
| model.perceiver.requires_grad_(True) | |
| model.lang_encoder.gated_cross_attn_layers.requires_grad_(True) | |
| if not freeze_lm_embeddings: | |
| model.lang_encoder.get_input_embeddings().requires_grad_(True) | |
| # TODO: investigate also training the output embeddings when untied | |
| print( | |
| f"Flamingo model initialized with {sum(p.numel() for p in model.parameters() if p.requires_grad)} trainable parameters" | |
| ) | |
| return model, image_processor, text_tokenizer | |
| def _infer_decoder_layers_attr_name(model): | |
| for k in __KNOWN_DECODER_LAYERS_ATTR_NAMES: | |
| if k.lower() in model.__class__.__name__.lower(): | |
| return __KNOWN_DECODER_LAYERS_ATTR_NAMES[k] | |
| raise ValueError( | |
| f"We require the attribute name for the nn.ModuleList in the decoder storing the transformer block layers. Please supply this string manually." | |
| ) | |
| __KNOWN_DECODER_LAYERS_ATTR_NAMES = { | |
| "opt": "model.decoder.layers", | |
| "gptj": "transformer.h", | |
| "gpt-j": "transformer.h", | |
| "pythia": "gpt_neox.layers", | |
| "llama": "model.layers", | |
| "gptneoxforcausallm": "gpt_neox.layers", | |
| "mpt": "transformer.blocks", | |
| "mosaicgpt": "transformer.blocks", | |
| } | |