kennymckormick
commited on
Commit
·
a6e43e6
1
Parent(s):
b11357b
update
Browse files- .pre-commit-config.yaml +33 -0
- README.md +1 -1
- app.py +37 -32
- gen_table.py +146 -0
- lb_info.py → meta_data.py +1 -136
- requirements.txt +1 -1
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exclude: |
|
2 |
+
(?x)^(
|
3 |
+
meta_data.py
|
4 |
+
)
|
5 |
+
repos:
|
6 |
+
- repo: https://github.com/PyCQA/flake8
|
7 |
+
rev: 5.0.4
|
8 |
+
hooks:
|
9 |
+
- id: flake8
|
10 |
+
args: ["--max-line-length=120", "--ignore=F401,F403,F405,E402"]
|
11 |
+
exclude: ^configs/
|
12 |
+
- repo: https://github.com/PyCQA/isort
|
13 |
+
rev: 5.11.5
|
14 |
+
hooks:
|
15 |
+
- id: isort
|
16 |
+
- repo: https://github.com/pre-commit/mirrors-yapf
|
17 |
+
rev: v0.30.0
|
18 |
+
hooks:
|
19 |
+
- id: yapf
|
20 |
+
args: ["--style={column_limit=120}"]
|
21 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
22 |
+
rev: v3.1.0
|
23 |
+
hooks:
|
24 |
+
- id: trailing-whitespace
|
25 |
+
- id: check-yaml
|
26 |
+
- id: end-of-file-fixer
|
27 |
+
- id: requirements-txt-fixer
|
28 |
+
- id: double-quote-string-fixer
|
29 |
+
- id: check-merge-conflict
|
30 |
+
- id: fix-encoding-pragma
|
31 |
+
args: ["--remove"]
|
32 |
+
- id: mixed-line-ending
|
33 |
+
args: ["--fix=lf"]
|
README.md
CHANGED
@@ -12,4 +12,4 @@ tags:
|
|
12 |
- leaderboard
|
13 |
---
|
14 |
|
15 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
12 |
- leaderboard
|
13 |
---
|
14 |
|
15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import abc
|
|
|
2 |
import gradio as gr
|
3 |
-
|
|
|
|
|
4 |
|
5 |
with gr.Blocks() as demo:
|
6 |
struct = load_results()
|
@@ -24,30 +27,30 @@ with gr.Blocks() as demo:
|
|
24 |
checkbox_group = gr.CheckboxGroup(
|
25 |
choices=check_box['all'],
|
26 |
value=check_box['required'],
|
27 |
-
label=
|
28 |
interactive=True,
|
29 |
)
|
30 |
headers = check_box['essential'] + checkbox_group.value
|
31 |
with gr.Row():
|
32 |
model_size = gr.CheckboxGroup(
|
33 |
-
choices=MODEL_SIZE,
|
34 |
-
value=MODEL_SIZE,
|
35 |
label='Model Size',
|
36 |
interactive=True
|
37 |
)
|
38 |
model_type = gr.CheckboxGroup(
|
39 |
-
choices=MODEL_TYPE,
|
40 |
-
value=MODEL_TYPE,
|
41 |
label='Model Type',
|
42 |
interactive=True
|
43 |
)
|
44 |
data_component = gr.components.DataFrame(
|
45 |
-
value=table[headers],
|
46 |
-
type=
|
47 |
datatype=[type_map[x] for x in headers],
|
48 |
-
interactive=False,
|
49 |
visible=True)
|
50 |
-
|
51 |
def filter_df(fields, model_size, model_type):
|
52 |
headers = check_box['essential'] + fields
|
53 |
df = cp.deepcopy(table)
|
@@ -58,12 +61,12 @@ with gr.Blocks() as demo:
|
|
58 |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
59 |
df = df[df['flag']]
|
60 |
df.pop('flag')
|
61 |
-
|
62 |
comp = gr.components.DataFrame(
|
63 |
-
value=df[headers],
|
64 |
-
type=
|
65 |
datatype=[type_map[x] for x in headers],
|
66 |
-
interactive=False,
|
67 |
visible=True)
|
68 |
return comp
|
69 |
|
@@ -84,31 +87,31 @@ with gr.Blocks() as demo:
|
|
84 |
s.checkbox_group = gr.CheckboxGroup(
|
85 |
choices=s.check_box['all'],
|
86 |
value=s.check_box['required'],
|
87 |
-
label=f
|
88 |
interactive=True,
|
89 |
)
|
90 |
s.headers = s.check_box['essential'] + s.checkbox_group.value
|
91 |
with gr.Row():
|
92 |
s.model_size = gr.CheckboxGroup(
|
93 |
-
choices=MODEL_SIZE,
|
94 |
-
value=MODEL_SIZE,
|
95 |
label='Model Size',
|
96 |
interactive=True
|
97 |
)
|
98 |
s.model_type = gr.CheckboxGroup(
|
99 |
-
choices=MODEL_TYPE,
|
100 |
-
value=MODEL_TYPE,
|
101 |
label='Model Type',
|
102 |
interactive=True
|
103 |
)
|
104 |
s.data_component = gr.components.DataFrame(
|
105 |
-
value=s.table[s.headers],
|
106 |
-
type=
|
107 |
datatype=[s.type_map[x] for x in s.headers],
|
108 |
-
interactive=False,
|
109 |
visible=True)
|
110 |
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
|
111 |
-
|
112 |
def filter_df_l2(dataset_name, fields, model_size, model_type):
|
113 |
s = structs[DATASETS.index(dataset_name)]
|
114 |
headers = s.check_box['essential'] + fields
|
@@ -120,25 +123,27 @@ with gr.Blocks() as demo:
|
|
120 |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
121 |
df = df[df['flag']]
|
122 |
df.pop('flag')
|
123 |
-
|
124 |
comp = gr.components.DataFrame(
|
125 |
-
value=df[headers],
|
126 |
-
type=
|
127 |
datatype=[s.type_map[x] for x in headers],
|
128 |
-
interactive=False,
|
129 |
visible=True)
|
130 |
return comp
|
131 |
|
132 |
for cbox in [s.checkbox_group, s.model_size, s.model_type]:
|
133 |
-
cbox.change(
|
134 |
-
|
|
|
|
|
135 |
|
136 |
with gr.Row():
|
137 |
-
with gr.Accordion(
|
138 |
citation_button = gr.Textbox(
|
139 |
-
value=CITATION_BUTTON_TEXT,
|
140 |
label=CITATION_BUTTON_LABEL,
|
141 |
elem_id='citation-button')
|
142 |
|
143 |
if __name__ == '__main__':
|
144 |
-
demo.launch(server_name='0.0.0.0')
|
|
|
1 |
import abc
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
|
5 |
+
from gen_table import *
|
6 |
+
from meta_data import *
|
7 |
|
8 |
with gr.Blocks() as demo:
|
9 |
struct = load_results()
|
|
|
27 |
checkbox_group = gr.CheckboxGroup(
|
28 |
choices=check_box['all'],
|
29 |
value=check_box['required'],
|
30 |
+
label='Evaluation Dimension',
|
31 |
interactive=True,
|
32 |
)
|
33 |
headers = check_box['essential'] + checkbox_group.value
|
34 |
with gr.Row():
|
35 |
model_size = gr.CheckboxGroup(
|
36 |
+
choices=MODEL_SIZE,
|
37 |
+
value=MODEL_SIZE,
|
38 |
label='Model Size',
|
39 |
interactive=True
|
40 |
)
|
41 |
model_type = gr.CheckboxGroup(
|
42 |
+
choices=MODEL_TYPE,
|
43 |
+
value=MODEL_TYPE,
|
44 |
label='Model Type',
|
45 |
interactive=True
|
46 |
)
|
47 |
data_component = gr.components.DataFrame(
|
48 |
+
value=table[headers],
|
49 |
+
type='pandas',
|
50 |
datatype=[type_map[x] for x in headers],
|
51 |
+
interactive=False,
|
52 |
visible=True)
|
53 |
+
|
54 |
def filter_df(fields, model_size, model_type):
|
55 |
headers = check_box['essential'] + fields
|
56 |
df = cp.deepcopy(table)
|
|
|
61 |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
62 |
df = df[df['flag']]
|
63 |
df.pop('flag')
|
64 |
+
|
65 |
comp = gr.components.DataFrame(
|
66 |
+
value=df[headers],
|
67 |
+
type='pandas',
|
68 |
datatype=[type_map[x] for x in headers],
|
69 |
+
interactive=False,
|
70 |
visible=True)
|
71 |
return comp
|
72 |
|
|
|
87 |
s.checkbox_group = gr.CheckboxGroup(
|
88 |
choices=s.check_box['all'],
|
89 |
value=s.check_box['required'],
|
90 |
+
label=f'{dataset} CheckBoxes',
|
91 |
interactive=True,
|
92 |
)
|
93 |
s.headers = s.check_box['essential'] + s.checkbox_group.value
|
94 |
with gr.Row():
|
95 |
s.model_size = gr.CheckboxGroup(
|
96 |
+
choices=MODEL_SIZE,
|
97 |
+
value=MODEL_SIZE,
|
98 |
label='Model Size',
|
99 |
interactive=True
|
100 |
)
|
101 |
s.model_type = gr.CheckboxGroup(
|
102 |
+
choices=MODEL_TYPE,
|
103 |
+
value=MODEL_TYPE,
|
104 |
label='Model Type',
|
105 |
interactive=True
|
106 |
)
|
107 |
s.data_component = gr.components.DataFrame(
|
108 |
+
value=s.table[s.headers],
|
109 |
+
type='pandas',
|
110 |
datatype=[s.type_map[x] for x in s.headers],
|
111 |
+
interactive=False,
|
112 |
visible=True)
|
113 |
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
|
114 |
+
|
115 |
def filter_df_l2(dataset_name, fields, model_size, model_type):
|
116 |
s = structs[DATASETS.index(dataset_name)]
|
117 |
headers = s.check_box['essential'] + fields
|
|
|
123 |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
124 |
df = df[df['flag']]
|
125 |
df.pop('flag')
|
126 |
+
|
127 |
comp = gr.components.DataFrame(
|
128 |
+
value=df[headers],
|
129 |
+
type='pandas',
|
130 |
datatype=[s.type_map[x] for x in headers],
|
131 |
+
interactive=False,
|
132 |
visible=True)
|
133 |
return comp
|
134 |
|
135 |
for cbox in [s.checkbox_group, s.model_size, s.model_type]:
|
136 |
+
cbox.change(
|
137 |
+
fn=filter_df_l2,
|
138 |
+
inputs=[s.dataset, s.checkbox_group, s.model_size, s.model_type],
|
139 |
+
outputs=s.data_component)
|
140 |
|
141 |
with gr.Row():
|
142 |
+
with gr.Accordion('Citation', open=False):
|
143 |
citation_button = gr.Textbox(
|
144 |
+
value=CITATION_BUTTON_TEXT,
|
145 |
label=CITATION_BUTTON_LABEL,
|
146 |
elem_id='citation-button')
|
147 |
|
148 |
if __name__ == '__main__':
|
149 |
+
demo.launch(server_name='0.0.0.0')
|
gen_table.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy as cp
|
2 |
+
import json
|
3 |
+
from collections import defaultdict
|
4 |
+
from urllib.request import urlopen
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
from meta_data import META_FIELDS, URL
|
11 |
+
|
12 |
+
|
13 |
+
def listinstr(lst, s):
|
14 |
+
assert isinstance(lst, list)
|
15 |
+
for item in lst:
|
16 |
+
if item in s:
|
17 |
+
return True
|
18 |
+
return False
|
19 |
+
|
20 |
+
|
21 |
+
def load_results():
|
22 |
+
data = json.loads(urlopen(URL).read())
|
23 |
+
return data
|
24 |
+
|
25 |
+
|
26 |
+
def nth_large(val, vals):
|
27 |
+
return sum([1 for v in vals if v > val]) + 1
|
28 |
+
|
29 |
+
|
30 |
+
def format_timestamp(timestamp):
|
31 |
+
date = timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6]
|
32 |
+
time = timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12]
|
33 |
+
return date + ' ' + time
|
34 |
+
|
35 |
+
|
36 |
+
def model_size_flag(sz, FIELDS):
|
37 |
+
if pd.isna(sz) and 'Unknown' in FIELDS:
|
38 |
+
return True
|
39 |
+
if pd.isna(sz):
|
40 |
+
return False
|
41 |
+
if '<10B' in FIELDS and sz < 10:
|
42 |
+
return True
|
43 |
+
if '10B-20B' in FIELDS and sz >= 10 and sz < 20:
|
44 |
+
return True
|
45 |
+
if '20B-40B' in FIELDS and sz >= 20 and sz < 40:
|
46 |
+
return True
|
47 |
+
if '>40B' in FIELDS and sz >= 40:
|
48 |
+
return True
|
49 |
+
return False
|
50 |
+
|
51 |
+
|
52 |
+
def model_type_flag(line, FIELDS):
|
53 |
+
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes':
|
54 |
+
return True
|
55 |
+
if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes':
|
56 |
+
return True
|
57 |
+
if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No':
|
58 |
+
return True
|
59 |
+
return False
|
60 |
+
|
61 |
+
|
62 |
+
def BUILD_L1_DF(results, fields):
|
63 |
+
res = defaultdict(list)
|
64 |
+
for i, m in enumerate(results):
|
65 |
+
item = results[m]
|
66 |
+
meta = item['META']
|
67 |
+
for k in META_FIELDS:
|
68 |
+
if k == 'Parameters (B)':
|
69 |
+
param = meta['Parameters']
|
70 |
+
res[k].append(float(param.replace('B', '')) if param != '' else None)
|
71 |
+
elif k == 'Method':
|
72 |
+
name, url = meta['Method']
|
73 |
+
res[k].append(f'<a href="{url}">{name}</a>')
|
74 |
+
else:
|
75 |
+
res[k].append(meta[k])
|
76 |
+
scores, ranks = [], []
|
77 |
+
for d in fields:
|
78 |
+
res[d].append(item[d]['Overall'])
|
79 |
+
if d == 'MME':
|
80 |
+
scores.append(item[d]['Overall'] / 28)
|
81 |
+
else:
|
82 |
+
scores.append(item[d]['Overall'])
|
83 |
+
ranks.append(nth_large(item[d]['Overall'], [x[d]['Overall'] for x in results.values()]))
|
84 |
+
res['Avg Score'].append(round(np.mean(scores), 1))
|
85 |
+
res['Avg Rank'].append(round(np.mean(ranks), 2))
|
86 |
+
|
87 |
+
df = pd.DataFrame(res)
|
88 |
+
df = df.sort_values('Avg Rank')
|
89 |
+
|
90 |
+
check_box = {}
|
91 |
+
check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model']
|
92 |
+
check_box['required'] = ['Avg Score', 'Avg Rank']
|
93 |
+
check_box['all'] = check_box['required'] + ['OpenSource', 'Verified'] + fields
|
94 |
+
type_map = defaultdict(lambda: 'number')
|
95 |
+
type_map['Method'] = 'html'
|
96 |
+
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
|
97 |
+
check_box['type_map'] = type_map
|
98 |
+
return df, check_box
|
99 |
+
|
100 |
+
|
101 |
+
def BUILD_L2_DF(results, dataset):
|
102 |
+
res = defaultdict(list)
|
103 |
+
fields = list(list(results.values())[0][dataset].keys())
|
104 |
+
non_overall_fields = [x for x in fields if 'Overall' not in x]
|
105 |
+
overall_fields = [x for x in fields if 'Overall' in x]
|
106 |
+
if dataset == 'MME':
|
107 |
+
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)]
|
108 |
+
overall_fields = overall_fields + ['Perception', 'Cognition']
|
109 |
+
|
110 |
+
for m in results:
|
111 |
+
item = results[m]
|
112 |
+
meta = item['META']
|
113 |
+
for k in META_FIELDS:
|
114 |
+
if k == 'Parameters (B)':
|
115 |
+
param = meta['Parameters']
|
116 |
+
res[k].append(float(param.replace('B', '')) if param != '' else None)
|
117 |
+
elif k == 'Method':
|
118 |
+
name, url = meta['Method']
|
119 |
+
res[k].append(f'<a href="{url}">{name}</a>')
|
120 |
+
else:
|
121 |
+
res[k].append(meta[k])
|
122 |
+
fields = [x for x in fields]
|
123 |
+
|
124 |
+
for d in non_overall_fields:
|
125 |
+
res[d].append(item[dataset][d])
|
126 |
+
for d in overall_fields:
|
127 |
+
res[d].append(item[dataset][d])
|
128 |
+
|
129 |
+
df = pd.DataFrame(res)
|
130 |
+
all_fields = overall_fields + non_overall_fields
|
131 |
+
# Use the first 5 non-overall fields as required fields
|
132 |
+
required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5]
|
133 |
+
|
134 |
+
if 'Overall' in overall_fields:
|
135 |
+
df = df.sort_values('Overall')
|
136 |
+
df = df.iloc[::-1]
|
137 |
+
|
138 |
+
check_box = {}
|
139 |
+
check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model']
|
140 |
+
check_box['required'] = required_fields
|
141 |
+
check_box['all'] = all_fields
|
142 |
+
type_map = defaultdict(lambda: 'number')
|
143 |
+
type_map['Method'] = 'html'
|
144 |
+
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
|
145 |
+
check_box['type_map'] = type_map
|
146 |
+
return df, check_box
|
lb_info.py → meta_data.py
RENAMED
@@ -1,17 +1,3 @@
|
|
1 |
-
import json
|
2 |
-
import pandas as pd
|
3 |
-
from collections import defaultdict
|
4 |
-
import gradio as gr
|
5 |
-
import copy as cp
|
6 |
-
import numpy as np
|
7 |
-
|
8 |
-
def listinstr(lst, s):
|
9 |
-
assert isinstance(lst, list)
|
10 |
-
for item in lst:
|
11 |
-
if item in s:
|
12 |
-
return True
|
13 |
-
return False
|
14 |
-
|
15 |
# CONSTANTS-URL
|
16 |
URL = "http://opencompass.openxlab.space/utils/OpenVLM.json"
|
17 |
VLMEVALKIT_README = 'https://raw.githubusercontent.com/open-compass/VLMEvalKit/main/README.md'
|
@@ -138,125 +124,4 @@ LEADERBOARD_MD['ScienceQA_VAL'] = """
|
|
138 |
- During evaluation, we use `GPT-3.5-Turbo-0613` as the choice extractor for all VLMs if the choice can not be extracted via heuristic matching. **Zero-shot** inference is adopted.
|
139 |
"""
|
140 |
|
141 |
-
LEADERBOARD_MD['ScienceQA_TEST'] = LEADERBOARD_MD['ScienceQA_VAL']
|
142 |
-
|
143 |
-
from urllib.request import urlopen
|
144 |
-
|
145 |
-
def load_results():
|
146 |
-
data = json.loads(urlopen(URL).read())
|
147 |
-
return data
|
148 |
-
|
149 |
-
def nth_large(val, vals):
|
150 |
-
return sum([1 for v in vals if v > val]) + 1
|
151 |
-
|
152 |
-
def format_timestamp(timestamp):
|
153 |
-
return timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6] + ' ' + timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12]
|
154 |
-
|
155 |
-
def model_size_flag(sz, FIELDS):
|
156 |
-
if pd.isna(sz) and 'Unknown' in FIELDS:
|
157 |
-
return True
|
158 |
-
if pd.isna(sz):
|
159 |
-
return False
|
160 |
-
if '<10B' in FIELDS and sz < 10:
|
161 |
-
return True
|
162 |
-
if '10B-20B' in FIELDS and sz >= 10 and sz < 20:
|
163 |
-
return True
|
164 |
-
if '20B-40B' in FIELDS and sz >= 20 and sz < 40:
|
165 |
-
return True
|
166 |
-
if '>40B' in FIELDS and sz >= 40:
|
167 |
-
return True
|
168 |
-
return False
|
169 |
-
|
170 |
-
def model_type_flag(line, FIELDS):
|
171 |
-
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes':
|
172 |
-
return True
|
173 |
-
if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes':
|
174 |
-
return True
|
175 |
-
if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No':
|
176 |
-
return True
|
177 |
-
return False
|
178 |
-
|
179 |
-
def BUILD_L1_DF(results, fields):
|
180 |
-
res = defaultdict(list)
|
181 |
-
for i, m in enumerate(results):
|
182 |
-
item = results[m]
|
183 |
-
meta = item['META']
|
184 |
-
for k in META_FIELDS:
|
185 |
-
if k == 'Parameters (B)':
|
186 |
-
param = meta['Parameters']
|
187 |
-
res[k].append(float(param.replace('B', '')) if param != '' else None)
|
188 |
-
elif k == 'Method':
|
189 |
-
name, url = meta['Method']
|
190 |
-
res[k].append(f'<a href="{url}">{name}</a>')
|
191 |
-
else:
|
192 |
-
res[k].append(meta[k])
|
193 |
-
scores, ranks = [], []
|
194 |
-
for d in fields:
|
195 |
-
res[d].append(item[d]['Overall'])
|
196 |
-
if d == 'MME':
|
197 |
-
scores.append(item[d]['Overall'] / 28)
|
198 |
-
else:
|
199 |
-
scores.append(item[d]['Overall'])
|
200 |
-
ranks.append(nth_large(item[d]['Overall'], [x[d]['Overall'] for x in results.values()]))
|
201 |
-
res['Avg Score'].append(round(np.mean(scores), 1))
|
202 |
-
res['Avg Rank'].append(round(np.mean(ranks), 2))
|
203 |
-
|
204 |
-
df = pd.DataFrame(res)
|
205 |
-
df = df.sort_values('Avg Rank')
|
206 |
-
|
207 |
-
check_box = {}
|
208 |
-
check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model']
|
209 |
-
check_box['required'] = ['Avg Score', 'Avg Rank']
|
210 |
-
check_box['all'] = check_box['required'] + ['OpenSource', 'Verified'] + fields
|
211 |
-
type_map = defaultdict(lambda: 'number')
|
212 |
-
type_map['Method'] = 'html'
|
213 |
-
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
|
214 |
-
check_box['type_map'] = type_map
|
215 |
-
return df, check_box
|
216 |
-
|
217 |
-
def BUILD_L2_DF(results, dataset):
|
218 |
-
res = defaultdict(list)
|
219 |
-
fields = list(list(results.values())[0][dataset].keys())
|
220 |
-
non_overall_fields = [x for x in fields if 'Overall' not in x]
|
221 |
-
overall_fields = [x for x in fields if 'Overall' in x]
|
222 |
-
if dataset == 'MME':
|
223 |
-
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)]
|
224 |
-
overall_fields = overall_fields + ['Perception', 'Cognition']
|
225 |
-
|
226 |
-
for m in results:
|
227 |
-
item = results[m]
|
228 |
-
meta = item['META']
|
229 |
-
for k in META_FIELDS:
|
230 |
-
if k == 'Parameters (B)':
|
231 |
-
param = meta['Parameters']
|
232 |
-
res[k].append(float(param.replace('B', '')) if param != '' else None)
|
233 |
-
elif k == 'Method':
|
234 |
-
name, url = meta['Method']
|
235 |
-
res[k].append(f'<a href="{url}">{name}</a>')
|
236 |
-
else:
|
237 |
-
res[k].append(meta[k])
|
238 |
-
fields = [x for x in fields]
|
239 |
-
|
240 |
-
for d in non_overall_fields:
|
241 |
-
res[d].append(item[dataset][d])
|
242 |
-
for d in overall_fields:
|
243 |
-
res[d].append(item[dataset][d])
|
244 |
-
|
245 |
-
df = pd.DataFrame(res)
|
246 |
-
all_fields = overall_fields + non_overall_fields
|
247 |
-
# Use the first 5 non-overall fields as required fields
|
248 |
-
required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5]
|
249 |
-
|
250 |
-
if 'Overall' in overall_fields:
|
251 |
-
df = df.sort_values('Overall')
|
252 |
-
df = df.iloc[::-1]
|
253 |
-
|
254 |
-
check_box = {}
|
255 |
-
check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model']
|
256 |
-
check_box['required'] = required_fields
|
257 |
-
check_box['all'] = all_fields
|
258 |
-
type_map = defaultdict(lambda: 'number')
|
259 |
-
type_map['Method'] = 'html'
|
260 |
-
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
|
261 |
-
check_box['type_map'] = type_map
|
262 |
-
return df, check_box
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# CONSTANTS-URL
|
2 |
URL = "http://opencompass.openxlab.space/utils/OpenVLM.json"
|
3 |
VLMEVALKIT_README = 'https://raw.githubusercontent.com/open-compass/VLMEvalKit/main/README.md'
|
|
|
124 |
- During evaluation, we use `GPT-3.5-Turbo-0613` as the choice extractor for all VLMs if the choice can not be extracted via heuristic matching. **Zero-shot** inference is adopted.
|
125 |
"""
|
126 |
|
127 |
+
LEADERBOARD_MD['ScienceQA_TEST'] = LEADERBOARD_MD['ScienceQA_VAL']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
|
|
1 |
numpy>=1.23.4
|
2 |
pandas>=1.5.3
|
3 |
-
gradio==4.15.0
|
|
|
1 |
+
gradio==4.15.0
|
2 |
numpy>=1.23.4
|
3 |
pandas>=1.5.3
|
|