Spaces:
Build error
Build error
mac
commited on
Commit
·
97d9cf5
1
Parent(s):
beb8609
upload_code
Browse files- README.md +7 -7
- app.py +319 -0
- eagle/model/__init__.py +0 -0
- eagle/model/choices.py +3 -0
- eagle/model/cnets.py +887 -0
- eagle/model/cnets1.py +835 -0
- eagle/model/configs.py +147 -0
- eagle/model/configuration_minicpm.py +196 -0
- eagle/model/ea_model.py +582 -0
- eagle/model/kv_cache.py +157 -0
- eagle/model/modeling_llama_kv.py +1597 -0
- eagle/model/modeling_minicpm_kv.py +0 -0
- eagle/model/modeling_mixtral_kv.py +1199 -0
- eagle/model/modeling_qwen2_kv.py +1513 -0
- eagle/model/utils.py +481 -0
- eagle/model/utils_c.py +206 -0
- requirements.txt +11 -0
- utils_chatbot.py +63 -0
README.md
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
---
|
| 2 |
-
title: MiniCPM4.1 8B
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
|
| 11 |
-
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: MiniCPM4.1 8B Eagle3 Straming
|
| 3 |
+
emoji: 🚀
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.44.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
tags:
|
| 11 |
+
- anycoder
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MiniCPM-4.1-8B-Eagle3
|
| 2 |
+
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import time
|
| 5 |
+
import logging
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
import spaces
|
| 9 |
+
import threading
|
| 10 |
+
from transformers import AutoTokenizer, TextIteratorStreamer
|
| 11 |
+
# 导入模型相关模块
|
| 12 |
+
from eagle.model.ea_model import EaModel
|
| 13 |
+
from utils_chatbot import organize_messages, stream2display_text, mtp_new_tokens
|
| 14 |
+
|
| 15 |
+
# 日志配置
|
| 16 |
+
logging.basicConfig(level=logging.INFO)
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# 全局模型实例
|
| 21 |
+
global_model = None
|
| 22 |
+
# 全局模型缓存(在GPU进程中)
|
| 23 |
+
_gpu_model_cache = None
|
| 24 |
+
# 全局模型配置
|
| 25 |
+
model_config = dict(
|
| 26 |
+
base_model_path = "openbmb/MiniCPM4.1-8B",
|
| 27 |
+
ea_model_path = "openbmb/MiniCPM4.1-8B-Eagle3/MiniCPM4_1-8B-Eagle3-bf16",
|
| 28 |
+
total_token=40,
|
| 29 |
+
depth=3,
|
| 30 |
+
top_k=10,
|
| 31 |
+
threshold=1.0,
|
| 32 |
+
use_eagle3=True,
|
| 33 |
+
device_map = "cpu",
|
| 34 |
+
trust_remote_code=True,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# 提前加载 tokenizer
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 39 |
+
"openbmb/MiniCPM4.1-8B",
|
| 40 |
+
use_fast=False,
|
| 41 |
+
device_map="cpu",
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
def _initialize_gpu_model():
|
| 45 |
+
"""在GPU进程中获取模型并移到GPU"""
|
| 46 |
+
global _gpu_model_cache
|
| 47 |
+
if _gpu_model_cache is None:
|
| 48 |
+
logger.info(f"在GPU进程中初始化模型")
|
| 49 |
+
_gpu_model_cache = EaModel.from_pretrained(**model_config)
|
| 50 |
+
logger.info(f"模型在CPU上初始化完成")
|
| 51 |
+
return _gpu_model_cache
|
| 52 |
+
|
| 53 |
+
@spaces.GPU(duration=42) # default is 60
|
| 54 |
+
def gpu_handler(inputs):
|
| 55 |
+
prompt_text = tokenizer.apply_chat_template(
|
| 56 |
+
inputs,
|
| 57 |
+
tokenize=False,
|
| 58 |
+
add_generation_prompt=True,
|
| 59 |
+
)
|
| 60 |
+
model_inputs = tokenizer([prompt_text], return_tensors="pt")
|
| 61 |
+
inputs = {
|
| 62 |
+
"model_inputs": model_inputs,
|
| 63 |
+
"max_new_tokens": 65536,
|
| 64 |
+
"temperature": 0.6,
|
| 65 |
+
"top_p": 0.95,
|
| 66 |
+
"top_k": 50,
|
| 67 |
+
"max_length": 65536,
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
logger.info(f"向 GPU 搬运 global_model")
|
| 71 |
+
|
| 72 |
+
"""GPU推理处理器"""
|
| 73 |
+
model = _initialize_gpu_model()
|
| 74 |
+
|
| 75 |
+
cuda_inputs = dict(
|
| 76 |
+
input_ids=inputs["model_inputs"].input_ids.to("cuda"),
|
| 77 |
+
# attention_mask=inputs["model_inputs"].attention_mask.to("cuda"),
|
| 78 |
+
max_new_tokens=inputs["max_new_tokens"],
|
| 79 |
+
temperature=inputs["temperature"],
|
| 80 |
+
top_p=inputs["top_p"],
|
| 81 |
+
top_k=inputs["top_k"],
|
| 82 |
+
max_length=inputs["max_length"],
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
model.base_model.to("cuda")
|
| 86 |
+
model.ea_layer.to("cuda")
|
| 87 |
+
model.ea_layer.tree_mask_init.to("cuda")
|
| 88 |
+
|
| 89 |
+
logger.info(f"pass inputs to global_model")
|
| 90 |
+
|
| 91 |
+
output_ids = model.eagenerate(**cuda_inputs)
|
| 92 |
+
|
| 93 |
+
logger.info(f"got outputs from global_model.eagenerate")
|
| 94 |
+
new_text = tokenizer.decode(
|
| 95 |
+
output_ids[0][model_inputs.input_ids.shape[1]:],
|
| 96 |
+
skip_special_tokens=True,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
return new_text
|
| 100 |
+
|
| 101 |
+
@spaces.GPU(duration=60) # default is 60
|
| 102 |
+
def gpu_handler_s(
|
| 103 |
+
inputs,
|
| 104 |
+
history,
|
| 105 |
+
temperature,
|
| 106 |
+
top_p,
|
| 107 |
+
use_eagle,
|
| 108 |
+
):
|
| 109 |
+
prompt_text = tokenizer.apply_chat_template(
|
| 110 |
+
inputs,
|
| 111 |
+
tokenize=False,
|
| 112 |
+
add_generation_prompt=True,
|
| 113 |
+
)
|
| 114 |
+
model_inputs = tokenizer([prompt_text], return_tensors="pt")
|
| 115 |
+
inputs = {
|
| 116 |
+
"model_inputs": model_inputs,
|
| 117 |
+
"max_new_tokens": 4096,
|
| 118 |
+
"temperature": temperature,
|
| 119 |
+
"top_p": top_p,
|
| 120 |
+
"top_k": 50,
|
| 121 |
+
"max_length": 65536,
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
logger.info(f"向 GPU 搬运 global_model")
|
| 125 |
+
|
| 126 |
+
"""GPU推理处理器"""
|
| 127 |
+
model = _initialize_gpu_model()
|
| 128 |
+
|
| 129 |
+
cuda_inputs = dict(
|
| 130 |
+
input_ids=inputs["model_inputs"].input_ids.to("cuda"),
|
| 131 |
+
# attention_mask=inputs["model_inputs"].attention_mask.to("cuda"),
|
| 132 |
+
max_new_tokens=inputs["max_new_tokens"],
|
| 133 |
+
temperature=inputs["temperature"],
|
| 134 |
+
top_p=inputs["top_p"],
|
| 135 |
+
top_k=inputs["top_k"],
|
| 136 |
+
max_length=inputs["max_length"],
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
model.base_model.to("cuda")
|
| 140 |
+
model.ea_layer.to("cuda")
|
| 141 |
+
model.ea_layer.tree_mask_init.to("cuda")
|
| 142 |
+
|
| 143 |
+
logger.info(f"pass inputs to global_model")
|
| 144 |
+
|
| 145 |
+
yield "", history
|
| 146 |
+
|
| 147 |
+
stop_token_ids = [
|
| 148 |
+
tokenizer.eos_token_id,
|
| 149 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 150 |
+
]
|
| 151 |
+
gen_tk_count, existing_tk_count = 0, len(inputs["model_inputs"].input_ids[0])
|
| 152 |
+
|
| 153 |
+
stream_text, start_time = "", time.time()
|
| 154 |
+
|
| 155 |
+
generate_func = model.ea_generate if use_eagle else model.naive_generate
|
| 156 |
+
|
| 157 |
+
for output_ids in generate_func(**cuda_inputs):
|
| 158 |
+
# for output_ids in model.ea_generate(**cuda_inputs):
|
| 159 |
+
new_tokens, gen_tk_count = mtp_new_tokens(output_ids, gen_tk_count, existing_tk_count, stop_token_ids)
|
| 160 |
+
new_token_text = tokenizer.decode(new_tokens, skip_special_tokens=False)
|
| 161 |
+
logger.info(f"[TOKEN]'''{new_token_text}'''")
|
| 162 |
+
stream_text += new_token_text
|
| 163 |
+
token_per_sec = gen_tk_count / (time.time() - start_time)
|
| 164 |
+
display_text = stream2display_text(stream_text, token_per_sec)
|
| 165 |
+
history[-1] = (history[-1][0], display_text)
|
| 166 |
+
yield "", history
|
| 167 |
+
|
| 168 |
+
# logger.info(f"all gen text: \n{stream_text}")
|
| 169 |
+
history[-1] = (history[-1][0], stream_text.replace("<|im_end|>", ""))
|
| 170 |
+
# 替换 history 为非 display 形态的 text
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
class Model:
|
| 174 |
+
"""模型封装类,不持有实际模型对象"""
|
| 175 |
+
|
| 176 |
+
def __init__(self):
|
| 177 |
+
logger.info(f"创建封装类")
|
| 178 |
+
|
| 179 |
+
def handler(self, inputs):
|
| 180 |
+
"""非流式推理处理器"""
|
| 181 |
+
return gpu_handler(inputs)
|
| 182 |
+
|
| 183 |
+
def stream_handler(self, inputs, history, **kwargs):
|
| 184 |
+
"""流式推理处理器"""
|
| 185 |
+
yield from gpu_handler_s(inputs, history, **kwargs)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def initialize_model():
|
| 189 |
+
"""初始化全局模型"""
|
| 190 |
+
global global_model, _gpu_model_cache
|
| 191 |
+
|
| 192 |
+
# 默认配置
|
| 193 |
+
logger.info(f"="*50)
|
| 194 |
+
logger.info(f"启动 MiniCPM-4.1-8B-Eagle3 Chatbot 服务")
|
| 195 |
+
logger.info(f"="*50)
|
| 196 |
+
|
| 197 |
+
# 创建模型封装类
|
| 198 |
+
global_model = Model()
|
| 199 |
+
|
| 200 |
+
# 在主进程中预加载模型到CPU(For faster 首次推理)
|
| 201 |
+
try:
|
| 202 |
+
logger.info("在主进程中预加载模型到 CPU...")
|
| 203 |
+
_gpu_model_cache = EaModel.from_pretrained(**model_config)
|
| 204 |
+
logger.info("模型在主进程CPU上预加载完成")
|
| 205 |
+
except Exception as e:
|
| 206 |
+
logger.warning(f"主进程预加载模型失败, 将在GPU进程中加载: {e}")
|
| 207 |
+
_gpu_model_cache = None
|
| 208 |
+
|
| 209 |
+
return global_model
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def gen_response(message, history, temperature, top_p):
|
| 213 |
+
chat_msg_ls = organize_messages(message, history)
|
| 214 |
+
|
| 215 |
+
new_text = global_model.handler(chat_msg_ls)
|
| 216 |
+
|
| 217 |
+
history.append((message, new_text))
|
| 218 |
+
return "", history
|
| 219 |
+
|
| 220 |
+
def gen_response_stream(
|
| 221 |
+
message,
|
| 222 |
+
history,
|
| 223 |
+
temperature,
|
| 224 |
+
top_p,
|
| 225 |
+
use_eagle,
|
| 226 |
+
):
|
| 227 |
+
chat_msg_ls = organize_messages(message, history)
|
| 228 |
+
|
| 229 |
+
history.append((message, ""))
|
| 230 |
+
|
| 231 |
+
sampling_kwargs = dict(
|
| 232 |
+
temperature = temperature,
|
| 233 |
+
top_p = top_p,
|
| 234 |
+
use_eagle = use_eagle,
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
yield from global_model.stream_handler(chat_msg_ls, history, **sampling_kwargs)
|
| 238 |
+
|
| 239 |
+
def create_app():
|
| 240 |
+
assets_path = Path.cwd().absolute()/"assets"
|
| 241 |
+
logger.info(f"设置静态资源路径: {assets_path}")
|
| 242 |
+
gr.set_static_paths(paths=[assets_path])
|
| 243 |
+
logger.info("静态资源路径设置完成")
|
| 244 |
+
|
| 245 |
+
theme = gr.themes.Soft(
|
| 246 |
+
primary_hue="blue",
|
| 247 |
+
secondary_hue="gray",
|
| 248 |
+
neutral_hue="slate",
|
| 249 |
+
font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"],
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
# # Add border styling to components
|
| 253 |
+
# theme = theme.set(
|
| 254 |
+
# primary_border_size='1px', # 组件外框
|
| 255 |
+
# primary_border_color='*neutral_400', # 用主题里的 slate-400 灰色
|
| 256 |
+
# )
|
| 257 |
+
|
| 258 |
+
with gr.Blocks(
|
| 259 |
+
theme=theme,
|
| 260 |
+
css="""
|
| 261 |
+
.logo-container {
|
| 262 |
+
text-align: center;
|
| 263 |
+
margin: 0.5rem 0 1rem 0;
|
| 264 |
+
}
|
| 265 |
+
.logo-container img {
|
| 266 |
+
height: 96px;
|
| 267 |
+
width: auto;
|
| 268 |
+
max-width: 200px;
|
| 269 |
+
display: inline-block;
|
| 270 |
+
}
|
| 271 |
+
.input-box {
|
| 272 |
+
border: 1px solid #2f63b8;
|
| 273 |
+
border-radius: 8px;
|
| 274 |
+
}
|
| 275 |
+
""",
|
| 276 |
+
) as demo:
|
| 277 |
+
with gr.Row():
|
| 278 |
+
with gr.Column(scale=1):
|
| 279 |
+
gr.HTML('<div class="logo-container"><img src="/gradio_api/file=assets/OpenBMB-MiniCPM.png" alt="MiniCPM Logo"></div>')
|
| 280 |
+
|
| 281 |
+
blank_1 = gr.HTML("<div style='height:1px;'></div>")
|
| 282 |
+
|
| 283 |
+
temperature = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.05, label="Temperature", scale=1)
|
| 284 |
+
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.01, label="Top-p", scale=1)
|
| 285 |
+
use_eagle = gr.Checkbox(label="Speculative Decoding", value=True)
|
| 286 |
+
|
| 287 |
+
blank_2 = gr.HTML("<div style='height:120px;'></div>")
|
| 288 |
+
|
| 289 |
+
clear = gr.Button("Clear History")
|
| 290 |
+
|
| 291 |
+
gr.Markdown(
|
| 292 |
+
"""
|
| 293 |
+
Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank">anycoder</a>
|
| 294 |
+
"""
|
| 295 |
+
)
|
| 296 |
+
with gr.Column(scale=4):
|
| 297 |
+
chatbot = gr.Chatbot(label="Chat History", placeholder="Input to start a new chat", height=500)
|
| 298 |
+
prompt = gr.Textbox(
|
| 299 |
+
label="Input Text",
|
| 300 |
+
placeholder="Type your message here...",
|
| 301 |
+
lines=1,
|
| 302 |
+
# submit_btn=True,
|
| 303 |
+
elem_classes=["input-box"], # 自定义 class 供 css 使用
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
prompt.submit(gen_response_stream, inputs=[prompt, chatbot, temperature, top_p, use_eagle], outputs=[prompt, chatbot])
|
| 307 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 308 |
+
|
| 309 |
+
return demo
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
if __name__ == "__main__":
|
| 313 |
+
# 初始化模型
|
| 314 |
+
initialize_model()
|
| 315 |
+
|
| 316 |
+
# 创建并启动应用
|
| 317 |
+
demo = create_app()
|
| 318 |
+
demo.launch()
|
| 319 |
+
|
eagle/model/__init__.py
ADDED
|
File without changes
|
eagle/model/choices.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mc_sim_7b_63 = [[0],[1],[2],[3],[0,0],[0,1],[0,2],[1,0],[1,1],[2,0],[2,1],[3,0]
|
| 2 |
+
,[0,0,0],[0,0,1],[0,0,2],[0,1,0],[0,1,1],[0,2,0],[0,2,1],[1,0,0],
|
| 3 |
+
[0,0,0,0],[0,0,0,1],[0,0,0,2],[0,0,0,0,0],[0,0,0,0,1]]
|
eagle/model/cnets.py
ADDED
|
@@ -0,0 +1,887 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
""" PyTorch LLaMA model."""
|
| 21 |
+
import copy
|
| 22 |
+
import os
|
| 23 |
+
# os.environ["CUDA_VISIBLE_DEVICES"] = "5"
|
| 24 |
+
import math
|
| 25 |
+
from typing import List, Optional, Tuple, Union
|
| 26 |
+
import torch.nn.functional as F
|
| 27 |
+
import torch.utils.checkpoint
|
| 28 |
+
from torch import nn
|
| 29 |
+
|
| 30 |
+
from transformers.activations import ACT2FN
|
| 31 |
+
from huggingface_hub import hf_hub_download
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
from .configs import EConfig
|
| 36 |
+
from .utils_c import *
|
| 37 |
+
from .choices import *
|
| 38 |
+
except:
|
| 39 |
+
from configs import EConfig
|
| 40 |
+
from utils_c import *
|
| 41 |
+
from choices import *
|
| 42 |
+
from utils import prepare_logits_processor
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 48 |
+
def _make_causal_mask(
|
| 49 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 50 |
+
):
|
| 51 |
+
"""
|
| 52 |
+
Make causal mask used for bi-directional self-attention.
|
| 53 |
+
"""
|
| 54 |
+
bsz, tgt_len = input_ids_shape
|
| 55 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
| 56 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 57 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 58 |
+
mask = mask.to(dtype)
|
| 59 |
+
|
| 60 |
+
if past_key_values_length > 0:
|
| 61 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 62 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 66 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 67 |
+
"""
|
| 68 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 69 |
+
"""
|
| 70 |
+
bsz, src_len = mask.size()
|
| 71 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 72 |
+
|
| 73 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 74 |
+
|
| 75 |
+
inverted_mask = 1.0 - expanded_mask
|
| 76 |
+
|
| 77 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 81 |
+
"""
|
| 82 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 83 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 84 |
+
"""
|
| 85 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 86 |
+
if n_rep == 1:
|
| 87 |
+
return hidden_states
|
| 88 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 89 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def rotate_half(x):
|
| 93 |
+
"""Rotates half the hidden dims of the input."""
|
| 94 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 95 |
+
x2 = x[..., x.shape[-1] // 2:]
|
| 96 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
| 100 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
| 101 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 102 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 103 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
| 104 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
| 105 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 106 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 107 |
+
return q_embed, k_embed
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
| 111 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 112 |
+
super().__init__()
|
| 113 |
+
|
| 114 |
+
self.dim = dim
|
| 115 |
+
self.max_position_embeddings = max_position_embeddings
|
| 116 |
+
self.base = base
|
| 117 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 118 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 119 |
+
|
| 120 |
+
# Build here to make `torch.jit.trace` work.
|
| 121 |
+
self._set_cos_sin_cache(
|
| 122 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 126 |
+
self.max_seq_len_cached = seq_len
|
| 127 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 128 |
+
|
| 129 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 130 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 131 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 132 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 133 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 134 |
+
|
| 135 |
+
def forward(self, x, seq_len=None):
|
| 136 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 137 |
+
if seq_len > self.max_seq_len_cached:
|
| 138 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 139 |
+
|
| 140 |
+
return (
|
| 141 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 142 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
| 147 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 148 |
+
|
| 149 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 150 |
+
self.scaling_factor = scaling_factor
|
| 151 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 152 |
+
|
| 153 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 154 |
+
self.max_seq_len_cached = seq_len
|
| 155 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 156 |
+
t = t / self.scaling_factor
|
| 157 |
+
|
| 158 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 159 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 160 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 161 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 162 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
| 166 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
| 167 |
+
|
| 168 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 169 |
+
self.scaling_factor = scaling_factor
|
| 170 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 171 |
+
|
| 172 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 173 |
+
self.max_seq_len_cached = seq_len
|
| 174 |
+
|
| 175 |
+
if seq_len > self.max_position_embeddings:
|
| 176 |
+
base = self.base * (
|
| 177 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 178 |
+
) ** (self.dim / (self.dim - 2))
|
| 179 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 180 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 181 |
+
|
| 182 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 183 |
+
|
| 184 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 185 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 186 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 187 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 188 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class MiniCPMLongRoPE(LlamaRotaryEmbedding):
|
| 192 |
+
"""MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
| 193 |
+
|
| 194 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, short_factor=None, long_factor=None, original_max_position_embeddings=None):
|
| 195 |
+
self.short_factor = short_factor
|
| 196 |
+
self.long_factor = long_factor
|
| 197 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
| 198 |
+
scale = (max_position_embeddings / self.original_max_position_embeddings)
|
| 199 |
+
self.scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
|
| 200 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 201 |
+
|
| 202 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 203 |
+
self.max_seq_len_cached = seq_len
|
| 204 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 205 |
+
if seq_len > self.original_max_position_embeddings:
|
| 206 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=device)
|
| 207 |
+
else:
|
| 208 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=device)
|
| 209 |
+
|
| 210 |
+
freqs = torch.mul(
|
| 211 |
+
torch.outer(t, 1.0 / ext_factors).to(device=device),
|
| 212 |
+
self.inv_freq.to(device=device).to(dtype)
|
| 213 |
+
)
|
| 214 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 215 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 216 |
+
self.register_buffer('cos_cached', emb.cos()[None, None, :, :].to(dtype) * self.scaling_factor, persistent=False)
|
| 217 |
+
self.register_buffer('sin_cached', emb.sin()[None, None, :, :].to(dtype) * self.scaling_factor, persistent=False)
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
class LlamaAttention(nn.Module):
|
| 221 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 222 |
+
|
| 223 |
+
def __init__(self, config):
|
| 224 |
+
super().__init__()
|
| 225 |
+
self.config = config
|
| 226 |
+
self.hidden_size = config.hidden_size
|
| 227 |
+
self.num_heads = config.num_attention_heads
|
| 228 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 229 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 230 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 231 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 232 |
+
self.rope_theta = config.rope_theta
|
| 233 |
+
|
| 234 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 235 |
+
raise ValueError(
|
| 236 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 237 |
+
f" and `num_heads`: {self.num_heads})."
|
| 238 |
+
)
|
| 239 |
+
self.q_proj = nn.Linear(self.hidden_size * 2, self.num_heads * self.head_dim, bias=False)
|
| 240 |
+
self.k_proj = nn.Linear(self.hidden_size * 2, self.num_key_value_heads * self.head_dim, bias=False)
|
| 241 |
+
self.v_proj = nn.Linear(self.hidden_size * 2, self.num_key_value_heads * self.head_dim, bias=False)
|
| 242 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 243 |
+
self._init_rope()
|
| 244 |
+
|
| 245 |
+
def _init_rope(self):
|
| 246 |
+
if self.config.rope_scaling is None:
|
| 247 |
+
if hasattr(self.config, "rope_theta"):
|
| 248 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim,
|
| 249 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 250 |
+
base=self.config.rope_theta)
|
| 251 |
+
else:
|
| 252 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim,
|
| 253 |
+
max_position_embeddings=self.max_position_embeddings)
|
| 254 |
+
else:
|
| 255 |
+
scaling_type = self.config.rope_scaling["type"]
|
| 256 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
| 257 |
+
if scaling_type == "linear":
|
| 258 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
| 259 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
| 260 |
+
)
|
| 261 |
+
elif scaling_type == "dynamic":
|
| 262 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
| 263 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
| 264 |
+
)
|
| 265 |
+
elif scaling_type == "longrope":
|
| 266 |
+
self.rotary_emb = MiniCPMLongRoPE(
|
| 267 |
+
self.head_dim,
|
| 268 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 269 |
+
short_factor=self.config.rope_scaling['short_factor'],
|
| 270 |
+
long_factor=self.config.rope_scaling['long_factor'],
|
| 271 |
+
base=self.rope_theta,
|
| 272 |
+
original_max_position_embeddings=self.config.rope_scaling['original_max_position_embeddings']
|
| 273 |
+
)
|
| 274 |
+
else:
|
| 275 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
| 276 |
+
|
| 277 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 278 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 279 |
+
|
| 280 |
+
def forward(
|
| 281 |
+
self,
|
| 282 |
+
hidden_states: torch.Tensor,
|
| 283 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 284 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 285 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 286 |
+
output_attentions: bool = False,
|
| 287 |
+
use_cache: bool = False,
|
| 288 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 289 |
+
bsz, q_len, _ = hidden_states.size()
|
| 290 |
+
|
| 291 |
+
if self.config.pretraining_tp > 1:
|
| 292 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
| 293 |
+
query_slices = self.q_proj.weight.split(
|
| 294 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
| 295 |
+
)
|
| 296 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
| 297 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
| 298 |
+
|
| 299 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 300 |
+
query_states = torch.cat(query_states, dim=-1)
|
| 301 |
+
|
| 302 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 303 |
+
key_states = torch.cat(key_states, dim=-1)
|
| 304 |
+
|
| 305 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 306 |
+
value_states = torch.cat(value_states, dim=-1)
|
| 307 |
+
|
| 308 |
+
else:
|
| 309 |
+
query_states = self.q_proj(hidden_states)
|
| 310 |
+
key_states = self.k_proj(hidden_states)
|
| 311 |
+
value_states = self.v_proj(hidden_states)
|
| 312 |
+
|
| 313 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 314 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 315 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 316 |
+
|
| 317 |
+
kv_seq_len = key_states.shape[-2]
|
| 318 |
+
if past_key_value is not None:
|
| 319 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 320 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 321 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 322 |
+
|
| 323 |
+
if past_key_value is not None:
|
| 324 |
+
# reuse k, v, self_attention
|
| 325 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 326 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 327 |
+
|
| 328 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 329 |
+
|
| 330 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 331 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 332 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 333 |
+
|
| 334 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 335 |
+
|
| 336 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 337 |
+
raise ValueError(
|
| 338 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 339 |
+
f" {attn_weights.size()}"
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
if attention_mask is not None:
|
| 343 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 344 |
+
raise ValueError(
|
| 345 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 346 |
+
)
|
| 347 |
+
attn_weights = attn_weights + attention_mask
|
| 348 |
+
|
| 349 |
+
# upcast attention to fp32
|
| 350 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 351 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 352 |
+
|
| 353 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 354 |
+
raise ValueError(
|
| 355 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 356 |
+
f" {attn_output.size()}"
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 360 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 361 |
+
|
| 362 |
+
if self.config.pretraining_tp > 1:
|
| 363 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
| 364 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
| 365 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
| 366 |
+
else:
|
| 367 |
+
attn_output = self.o_proj(attn_output)
|
| 368 |
+
|
| 369 |
+
if not output_attentions:
|
| 370 |
+
attn_weights = None
|
| 371 |
+
|
| 372 |
+
return attn_output, attn_weights, past_key_value
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
class LlamaMLP(nn.Module):
|
| 376 |
+
def __init__(self, config):
|
| 377 |
+
super().__init__()
|
| 378 |
+
self.config = config
|
| 379 |
+
self.hidden_size = config.hidden_size
|
| 380 |
+
self.intermediate_size = config.intermediate_size
|
| 381 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 382 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 383 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 384 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 385 |
+
|
| 386 |
+
def forward(self, x):
|
| 387 |
+
if self.config.pretraining_tp > 1:
|
| 388 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
| 389 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
| 390 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
| 391 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
| 392 |
+
|
| 393 |
+
gate_proj = torch.cat(
|
| 394 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
| 395 |
+
)
|
| 396 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
| 397 |
+
|
| 398 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
| 399 |
+
down_proj = [
|
| 400 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
| 401 |
+
]
|
| 402 |
+
down_proj = sum(down_proj)
|
| 403 |
+
else:
|
| 404 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 405 |
+
|
| 406 |
+
return down_proj
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
class LlamaRMSNorm(nn.Module):
|
| 410 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 411 |
+
"""
|
| 412 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
| 413 |
+
"""
|
| 414 |
+
super().__init__()
|
| 415 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 416 |
+
self.variance_epsilon = eps
|
| 417 |
+
|
| 418 |
+
def forward(self, hidden_states):
|
| 419 |
+
input_dtype = hidden_states.dtype
|
| 420 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 421 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 422 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 423 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
class LlamaDecoderLayeremb(nn.Module):
|
| 427 |
+
def __init__(self, config, last=True):
|
| 428 |
+
super().__init__()
|
| 429 |
+
self.hidden_size = config.hidden_size
|
| 430 |
+
self.self_attn = LlamaAttention(config=config)
|
| 431 |
+
self.mlp = LlamaMLP(config)
|
| 432 |
+
self.last = last
|
| 433 |
+
# self.fc = nn.Linear(config.hidden_size * 2, config.hidden_size)
|
| 434 |
+
self.hidden_norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 435 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 436 |
+
# if self.index!=0:
|
| 437 |
+
|
| 438 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 439 |
+
|
| 440 |
+
def forward(
|
| 441 |
+
self,
|
| 442 |
+
input_emb: torch.Tensor,
|
| 443 |
+
hidden_states: torch.Tensor,
|
| 444 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 445 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 446 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 447 |
+
output_attentions: Optional[bool] = False,
|
| 448 |
+
use_cache: Optional[bool] = False,
|
| 449 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 450 |
+
"""
|
| 451 |
+
Args:
|
| 452 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 453 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 454 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 455 |
+
output_attentions (`bool`, *optional*):
|
| 456 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 457 |
+
returned tensors for more detail.
|
| 458 |
+
use_cache (`bool`, *optional*):
|
| 459 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 460 |
+
(see `past_key_values`).
|
| 461 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 462 |
+
"""
|
| 463 |
+
|
| 464 |
+
residual = hidden_states
|
| 465 |
+
|
| 466 |
+
hidden_states = self.hidden_norm(hidden_states)
|
| 467 |
+
input_emb = self.input_layernorm(input_emb)
|
| 468 |
+
|
| 469 |
+
hidden_states = torch.cat((input_emb, hidden_states), dim=-1)
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
# cache_hidden.append(hidden_states)
|
| 473 |
+
|
| 474 |
+
# Self Attention
|
| 475 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 476 |
+
hidden_states=hidden_states,
|
| 477 |
+
attention_mask=attention_mask,
|
| 478 |
+
position_ids=position_ids,
|
| 479 |
+
past_key_value=past_key_value,
|
| 480 |
+
output_attentions=output_attentions,
|
| 481 |
+
use_cache=use_cache,
|
| 482 |
+
)
|
| 483 |
+
hidden_states = residual + hidden_states
|
| 484 |
+
|
| 485 |
+
# Fully Connected
|
| 486 |
+
residual = hidden_states
|
| 487 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 488 |
+
hidden_states = self.mlp(hidden_states)
|
| 489 |
+
hidden_states = residual + hidden_states
|
| 490 |
+
|
| 491 |
+
outputs = (hidden_states,)
|
| 492 |
+
|
| 493 |
+
if output_attentions:
|
| 494 |
+
outputs += (self_attn_weights,)
|
| 495 |
+
|
| 496 |
+
if use_cache:
|
| 497 |
+
outputs += (present_key_value,)
|
| 498 |
+
|
| 499 |
+
return outputs
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
@torch.no_grad()
|
| 503 |
+
def padding(tensor, left=True):
|
| 504 |
+
zeropadding = torch.zeros_like(tensor[:, -1:])
|
| 505 |
+
if left:
|
| 506 |
+
tensor = torch.cat((zeropadding, tensor[:, :-1]), dim=1)
|
| 507 |
+
else:
|
| 508 |
+
tensor = torch.cat((tensor[:, 1:], zeropadding), dim=1)
|
| 509 |
+
return tensor
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def len_list(x, n):
|
| 514 |
+
return [i for i in x if len(i) <= n]
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
class Model(nn.Module):
|
| 518 |
+
def __init__(self, config, load_emb=False, path=None, bias=True, total_tokens=63, depth=5, top_k=8, threshold=1.0):
|
| 519 |
+
super().__init__()
|
| 520 |
+
self.config=config
|
| 521 |
+
self.gradient_checkpointing = True
|
| 522 |
+
self.padding_idx = config.pad_token_id
|
| 523 |
+
self.vocab_size = config.vocab_size
|
| 524 |
+
|
| 525 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 526 |
+
self.lm_head=nn.Linear(config.hidden_size,config.draft_vocab_size,bias=False)
|
| 527 |
+
if load_emb and not hasattr(config, "target_hidden_size"):
|
| 528 |
+
from safetensors import safe_open
|
| 529 |
+
import json
|
| 530 |
+
try:
|
| 531 |
+
index_json_path = os.path.join(path, "model.safetensors.index.json")
|
| 532 |
+
if not os.path.exists(index_json_path):
|
| 533 |
+
index_json_path = hf_hub_download(path, "model.safetensors.index.json")
|
| 534 |
+
with open(index_json_path, "r") as f:
|
| 535 |
+
index_json = json.loads(f.read())
|
| 536 |
+
emb_path = index_json["weight_map"]["model.embed_tokens.weight"]
|
| 537 |
+
local_emb_path = os.path.join(path, emb_path)
|
| 538 |
+
if not os.path.exists(local_emb_path):
|
| 539 |
+
local_emb_path = hf_hub_download(path, emb_path)
|
| 540 |
+
with safe_open(local_emb_path,
|
| 541 |
+
framework="pt",
|
| 542 |
+
device="cpu") as f:
|
| 543 |
+
tensor_slice = f.get_slice("model.embed_tokens.weight")
|
| 544 |
+
vocab_size, hidden_dim = tensor_slice.get_shape()
|
| 545 |
+
tensor = tensor_slice[:, :hidden_dim].float()
|
| 546 |
+
except:
|
| 547 |
+
index_json_path = os.path.join(path, "pytorch_model.bin.index.json")
|
| 548 |
+
if not os.path.exists(index_json_path):
|
| 549 |
+
index_json_path = hf_hub_download(path, "pytorch_model.bin.index.json")
|
| 550 |
+
with open(index_json_path, "r") as f:
|
| 551 |
+
index_json = json.loads(f.read())
|
| 552 |
+
emb_path = index_json["weight_map"]["model.embed_tokens.weight"]
|
| 553 |
+
local_emb_path = os.path.join(path, emb_path)
|
| 554 |
+
if not os.path.exists(local_emb_path):
|
| 555 |
+
local_emb_path = hf_hub_download(path, emb_path)
|
| 556 |
+
weights = torch.load(local_emb_path)
|
| 557 |
+
tensor = weights["model.embed_tokens.weight"].float()
|
| 558 |
+
self.embed_tokens.weight.data = tensor
|
| 559 |
+
|
| 560 |
+
self.top_k = top_k
|
| 561 |
+
self.total_tokens = total_tokens - 1
|
| 562 |
+
self.depth = depth
|
| 563 |
+
self.threshold = math.log(threshold)
|
| 564 |
+
# print("total_tokens",total_tokens)
|
| 565 |
+
# print("depth",depth)
|
| 566 |
+
# print("top_k",top_k)
|
| 567 |
+
# print("threshold",threshold)
|
| 568 |
+
self.hidden_size = config.hidden_size
|
| 569 |
+
self.midlayer = LlamaDecoderLayeremb(config)
|
| 570 |
+
if hasattr(config, "target_hidden_size"):
|
| 571 |
+
self.fc = nn.Linear(config.target_hidden_size * 3, self.hidden_size, bias=False)
|
| 572 |
+
else:
|
| 573 |
+
self.fc = nn.Linear(config.hidden_size * 3, self.hidden_size, bias=False)
|
| 574 |
+
self.norm=LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 575 |
+
self.logsoftmax = nn.LogSoftmax(dim=-1)
|
| 576 |
+
|
| 577 |
+
d2t=torch.zeros((config.draft_vocab_size),dtype=torch.long)
|
| 578 |
+
t2d=torch.zeros((config.vocab_size),dtype=torch.bool)
|
| 579 |
+
self.register_buffer("d2t", d2t)
|
| 580 |
+
self.register_buffer("t2d", t2d)
|
| 581 |
+
|
| 582 |
+
for param in self.embed_tokens.parameters():
|
| 583 |
+
param.requires_grad = False
|
| 584 |
+
|
| 585 |
+
def init_tree(self):
|
| 586 |
+
self.tree_mask_init = torch.eye(self.top_k, device=self.embed_tokens.weight.device)[None, None]
|
| 587 |
+
self.position_ids = torch.zeros(self.top_k, device=self.embed_tokens.weight.device, dtype=torch.long)
|
| 588 |
+
self.tree_mask_init = self.tree_mask_init.to(self.embed_tokens.weight.device)
|
| 589 |
+
|
| 590 |
+
def reset(self):
|
| 591 |
+
self.tree_mask = None
|
| 592 |
+
|
| 593 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 594 |
+
# create causal mask
|
| 595 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 596 |
+
combined_attention_mask = None
|
| 597 |
+
if input_shape[-1] > 1:
|
| 598 |
+
combined_attention_mask = _make_causal_mask(
|
| 599 |
+
input_shape,
|
| 600 |
+
# inputs_embeds.dtype,
|
| 601 |
+
torch.float32, # [MODIFIED] force to cast to float32
|
| 602 |
+
device=inputs_embeds.device,
|
| 603 |
+
past_key_values_length=past_key_values_length,
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
if attention_mask is not None:
|
| 607 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 608 |
+
expanded_attn_mask = _expand_mask(attention_mask, torch.float32, tgt_len=input_shape[-1]).to(
|
| 609 |
+
inputs_embeds.device
|
| 610 |
+
)
|
| 611 |
+
combined_attention_mask = (
|
| 612 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
# [MODIFIED] add tree mask
|
| 616 |
+
if hasattr(self, "tree_mask") and self.tree_mask is not None:
|
| 617 |
+
tree_mask = self.tree_mask
|
| 618 |
+
_, _, tree_shape0, tree_shape1 = tree_mask.shape
|
| 619 |
+
combined_attention_mask[:, :, -tree_shape0:, -tree_shape1:][
|
| 620 |
+
tree_mask == 0
|
| 621 |
+
] = torch.finfo(torch.float32).min
|
| 622 |
+
|
| 623 |
+
return combined_attention_mask
|
| 624 |
+
|
| 625 |
+
def forward(
|
| 626 |
+
self,
|
| 627 |
+
hidden_states,
|
| 628 |
+
input_ids,
|
| 629 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 630 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 631 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 632 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 633 |
+
use_cache: Optional[bool] = None,
|
| 634 |
+
output_attentions: Optional[bool] = None,
|
| 635 |
+
output_hidden_states: Optional[bool] = None,
|
| 636 |
+
return_dict: Optional[bool] = None,
|
| 637 |
+
std=None
|
| 638 |
+
):
|
| 639 |
+
batch_size, seq_length, _ = hidden_states.shape
|
| 640 |
+
seq_length_with_past = seq_length
|
| 641 |
+
past_key_values_length = 0
|
| 642 |
+
|
| 643 |
+
with torch.no_grad():
|
| 644 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 645 |
+
# inputs_embeds = inputs_embeds.detach()
|
| 646 |
+
|
| 647 |
+
# if std is not None:
|
| 648 |
+
# noise = torch.randn(inputs_embeds.size(),device=inputs_embeds.device) * std
|
| 649 |
+
# inputs_embeds=inputs_embeds+noise
|
| 650 |
+
|
| 651 |
+
if past_key_values is not None:
|
| 652 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 653 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 654 |
+
if position_ids is None:
|
| 655 |
+
device = hidden_states.device if hidden_states is not None else inputs_embeds.device
|
| 656 |
+
position_ids = torch.arange(
|
| 657 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 658 |
+
)
|
| 659 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 660 |
+
else:
|
| 661 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 662 |
+
|
| 663 |
+
#position_ids=position_ids//4
|
| 664 |
+
if attention_mask is None:
|
| 665 |
+
attention_mask = torch.ones(
|
| 666 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=hidden_states.device
|
| 667 |
+
)
|
| 668 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 669 |
+
attention_mask, (batch_size, seq_length), hidden_states, past_key_values_length
|
| 670 |
+
)
|
| 671 |
+
|
| 672 |
+
# if self.gradient_checkpointing and self.training:
|
| 673 |
+
# if use_cache:
|
| 674 |
+
# use_cache = False
|
| 675 |
+
|
| 676 |
+
# hidden_states=self.act(self.fc(torch.cat((inputs_embeds,hidden_states),dim=-1)))
|
| 677 |
+
inputs_embeds = inputs_embeds.to(hidden_states.dtype)
|
| 678 |
+
if hidden_states.shape[-1]!=inputs_embeds.shape[-1]:
|
| 679 |
+
hidden_states = self.fc(hidden_states)
|
| 680 |
+
# hidden_states = self.fc(hidden_states)
|
| 681 |
+
|
| 682 |
+
all_hidden_states = () if output_hidden_states else None
|
| 683 |
+
next_decoder_cache = () if use_cache else None
|
| 684 |
+
|
| 685 |
+
past_key_value = past_key_values[0] if past_key_values is not None else None
|
| 686 |
+
layer_outputs = self.midlayer(
|
| 687 |
+
input_emb=inputs_embeds,
|
| 688 |
+
hidden_states=hidden_states,
|
| 689 |
+
attention_mask=attention_mask,
|
| 690 |
+
position_ids=position_ids,
|
| 691 |
+
past_key_value=past_key_value,
|
| 692 |
+
output_attentions=output_attentions,
|
| 693 |
+
use_cache=True,
|
| 694 |
+
)
|
| 695 |
+
if use_cache:
|
| 696 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 697 |
+
hidden_states = layer_outputs[0]
|
| 698 |
+
|
| 699 |
+
|
| 700 |
+
if use_cache:
|
| 701 |
+
return hidden_states, next_decoder_cache
|
| 702 |
+
|
| 703 |
+
return hidden_states
|
| 704 |
+
|
| 705 |
+
def reset_kv(self):
|
| 706 |
+
self.stable_kv = None
|
| 707 |
+
|
| 708 |
+
@torch.no_grad()
|
| 709 |
+
def topK_genrate(self, hidden_states, input_ids, head, logits_processor):
|
| 710 |
+
|
| 711 |
+
input_ids = input_ids.to(hidden_states.device)
|
| 712 |
+
total_tokens = self.total_tokens
|
| 713 |
+
depth = self.depth
|
| 714 |
+
top_k = self.top_k
|
| 715 |
+
|
| 716 |
+
sample_token = input_ids[:, -1]
|
| 717 |
+
|
| 718 |
+
scores_list = []
|
| 719 |
+
parents_list = []
|
| 720 |
+
ss_token = []
|
| 721 |
+
|
| 722 |
+
input_ids = input_ids[:, 1:]
|
| 723 |
+
input_ids = input_ids.to(hidden_states.device)
|
| 724 |
+
|
| 725 |
+
len_posi = input_ids.shape[1]
|
| 726 |
+
self.reset()
|
| 727 |
+
|
| 728 |
+
# with Timer("draft many"):
|
| 729 |
+
if hasattr(self, "stable_kv") and self.stable_kv is not None:
|
| 730 |
+
kv_len = self.stable_kv[0][0].shape[2]
|
| 731 |
+
out_hidden, past_key_values = self(hidden_states, input_ids=input_ids[:, kv_len:],
|
| 732 |
+
past_key_values=self.stable_kv, use_cache=True)
|
| 733 |
+
else:
|
| 734 |
+
out_hidden, past_key_values = self(hidden_states, input_ids=input_ids, use_cache=True)
|
| 735 |
+
self.stable_kv = past_key_values
|
| 736 |
+
last_hidden = out_hidden[:, -1]
|
| 737 |
+
|
| 738 |
+
# last_headout = head(last_hidden)
|
| 739 |
+
last_headout = self.lm_head(self.norm(last_hidden))
|
| 740 |
+
|
| 741 |
+
last_p = self.logsoftmax(last_headout)
|
| 742 |
+
top = torch.topk(last_p, top_k, dim=-1)
|
| 743 |
+
topk_index, topk_p = top.indices, top.values
|
| 744 |
+
scores = topk_p[0]
|
| 745 |
+
scores_list.append(scores[None])
|
| 746 |
+
parents_list.append(torch.zeros(1, dtype=torch.long, device=scores.device))
|
| 747 |
+
if self.config.vocab_size==self.config.draft_vocab_size:
|
| 748 |
+
ss_token.append(topk_index)
|
| 749 |
+
input_ids = topk_index
|
| 750 |
+
else:
|
| 751 |
+
ss_token.append(topk_index+self.d2t[topk_index])
|
| 752 |
+
input_ids = topk_index+self.d2t[topk_index]
|
| 753 |
+
input_hidden = last_hidden[None].repeat(1, top_k, 1)
|
| 754 |
+
tree_mask = self.tree_mask_init
|
| 755 |
+
topk_cs_index = torch.arange(top_k, device=self.embed_tokens.weight.device)
|
| 756 |
+
|
| 757 |
+
# 4
|
| 758 |
+
for i in range(depth):
|
| 759 |
+
self.tree_mask = tree_mask
|
| 760 |
+
position_ids = len_posi + self.position_ids
|
| 761 |
+
# with Timer("draft one"):
|
| 762 |
+
out_hidden, past_key_values = self(input_hidden, input_ids=input_ids, past_key_values=past_key_values,
|
| 763 |
+
position_ids=position_ids, use_cache=True)
|
| 764 |
+
len_posi += 1
|
| 765 |
+
|
| 766 |
+
# with Timer("sort1"):
|
| 767 |
+
bias1 = top_k if i > 0 else 0
|
| 768 |
+
bias2 = max(0, i - 1)
|
| 769 |
+
bias = 1 + top_k ** 2 * bias2 + bias1
|
| 770 |
+
parents = (topk_cs_index + bias)
|
| 771 |
+
parents_list.append(parents)
|
| 772 |
+
|
| 773 |
+
last_headout = self.lm_head(self.norm(out_hidden[0]))
|
| 774 |
+
last_p = self.logsoftmax(last_headout)
|
| 775 |
+
|
| 776 |
+
top = torch.topk(last_p, top_k, dim=-1)
|
| 777 |
+
topk_index, topk_p = top.indices, top.values
|
| 778 |
+
|
| 779 |
+
cu_scores = topk_p + scores[:, None]
|
| 780 |
+
|
| 781 |
+
topk_cs = torch.topk(cu_scores.view(-1), top_k, dim=-1)
|
| 782 |
+
topk_cs_index, topk_cs_p = topk_cs.indices, topk_cs.values
|
| 783 |
+
scores = topk_cs_p
|
| 784 |
+
|
| 785 |
+
out_ids = topk_cs_index // top_k
|
| 786 |
+
input_hidden = out_hidden[:, out_ids]
|
| 787 |
+
|
| 788 |
+
input_ids = topk_index.view(-1)[topk_cs_index][None]
|
| 789 |
+
|
| 790 |
+
if self.config.vocab_size == self.config.draft_vocab_size:
|
| 791 |
+
ss_token.append(topk_index)
|
| 792 |
+
else:
|
| 793 |
+
input_ids = input_ids + self.d2t[input_ids]
|
| 794 |
+
ss_token.append(topk_index+self.d2t[topk_index])
|
| 795 |
+
scores_list.append(cu_scores)
|
| 796 |
+
|
| 797 |
+
# <mod> JQZ 250912
|
| 798 |
+
# tree_mask = torch.cat((tree_mask[:, :, out_ids], self.tree_mask_init), dim=3)
|
| 799 |
+
# <before-after> for dynamic moving between cpu and gpu
|
| 800 |
+
out_ids_for_mask = out_ids.to(tree_mask.device)
|
| 801 |
+
tree_mask = torch.cat((tree_mask[:, :, out_ids_for_mask], self.tree_mask_init), dim=3)
|
| 802 |
+
# </mod>
|
| 803 |
+
|
| 804 |
+
|
| 805 |
+
scores_list = torch.cat(scores_list, dim=0).view(-1)
|
| 806 |
+
ss_token_list = torch.cat(ss_token, dim=0).view(-1)
|
| 807 |
+
top_scores = torch.topk(scores_list, total_tokens, dim=-1)
|
| 808 |
+
top_scores_index = top_scores.indices
|
| 809 |
+
top_scores_index = torch.sort(top_scores_index).values
|
| 810 |
+
|
| 811 |
+
draft_tokens = ss_token_list[top_scores_index]
|
| 812 |
+
draft_tokens = torch.cat((sample_token, draft_tokens), dim=0)
|
| 813 |
+
|
| 814 |
+
draft_parents = torch.cat(parents_list, dim=0)[top_scores_index // top_k].long()
|
| 815 |
+
mask_index = torch.searchsorted(top_scores_index, draft_parents - 1, right=False)
|
| 816 |
+
# mask_index[(top_scores_index[mask_index]!=draft_parents - 1)]=-1
|
| 817 |
+
mask_index[draft_parents == 0] = -1
|
| 818 |
+
mask_index = mask_index + 1
|
| 819 |
+
mask_index_list = mask_index.tolist()
|
| 820 |
+
# with Timer("mask"):
|
| 821 |
+
tree_mask = torch.eye(total_tokens + 1).bool()
|
| 822 |
+
tree_mask[:, 0] = True
|
| 823 |
+
for i in range(total_tokens):
|
| 824 |
+
tree_mask[i + 1].add_(tree_mask[mask_index_list[i]])
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
tree_position_ids = torch.sum(tree_mask, dim=1) - 1
|
| 828 |
+
|
| 829 |
+
tree_mask = tree_mask.float()[None, None]
|
| 830 |
+
draft_tokens = draft_tokens[None]
|
| 831 |
+
|
| 832 |
+
del parents_list, scores_list, ss_token, ss_token_list, draft_parents
|
| 833 |
+
|
| 834 |
+
# with Timer("retrieve"):
|
| 835 |
+
|
| 836 |
+
max_depth = torch.max(tree_position_ids) + 1
|
| 837 |
+
noleaf_index = torch.unique(mask_index).tolist()
|
| 838 |
+
noleaf_num = len(noleaf_index) - 1
|
| 839 |
+
leaf_num = total_tokens - noleaf_num
|
| 840 |
+
|
| 841 |
+
retrieve_indices = torch.zeros(leaf_num, max_depth.item(), dtype=torch.long) - 1
|
| 842 |
+
retrieve_indices = retrieve_indices.tolist()
|
| 843 |
+
|
| 844 |
+
rid = 0
|
| 845 |
+
position_ids_list = tree_position_ids.tolist()
|
| 846 |
+
|
| 847 |
+
for i in range(total_tokens + 1):
|
| 848 |
+
if i not in noleaf_index:
|
| 849 |
+
cid = i
|
| 850 |
+
depth = position_ids_list[i]
|
| 851 |
+
for j in reversed(range(depth + 1)):
|
| 852 |
+
retrieve_indices[rid][j] = cid
|
| 853 |
+
cid = mask_index_list[cid - 1]
|
| 854 |
+
rid += 1
|
| 855 |
+
|
| 856 |
+
if logits_processor is not None:
|
| 857 |
+
maxitem = total_tokens + 5
|
| 858 |
+
|
| 859 |
+
def custom_sort(lst):
|
| 860 |
+
# sort_keys=[len(list)]
|
| 861 |
+
sort_keys = []
|
| 862 |
+
for i in range(len(lst)):
|
| 863 |
+
sort_keys.append(lst[i] if lst[i] >= 0 else maxitem)
|
| 864 |
+
return sort_keys
|
| 865 |
+
|
| 866 |
+
retrieve_indices = sorted(retrieve_indices, key=custom_sort)
|
| 867 |
+
|
| 868 |
+
retrieve_indices = torch.tensor(retrieve_indices, dtype=torch.long)
|
| 869 |
+
del mask_index, mask_index_list, noleaf_index, noleaf_num, leaf_num, max_depth, rid
|
| 870 |
+
tree_position_ids = tree_position_ids.to(hidden_states.device)
|
| 871 |
+
|
| 872 |
+
return draft_tokens, retrieve_indices, tree_mask, tree_position_ids
|
| 873 |
+
|
| 874 |
+
|
| 875 |
+
|
| 876 |
+
|
| 877 |
+
import torch
|
| 878 |
+
|
| 879 |
+
|
| 880 |
+
def count_parameters(model):
|
| 881 |
+
return sum(p.numel() for p in model.parameters())
|
| 882 |
+
|
| 883 |
+
|
| 884 |
+
if __name__ == "__main__":
|
| 885 |
+
config = EConfig.from_pretrained('config.json')
|
| 886 |
+
model = Model(config, load_emb=False)
|
| 887 |
+
print(model)
|
eagle/model/cnets1.py
ADDED
|
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
""" PyTorch LLaMA model."""
|
| 21 |
+
import copy
|
| 22 |
+
import os
|
| 23 |
+
# os.environ["CUDA_VISIBLE_DEVICES"] = "5"
|
| 24 |
+
import math
|
| 25 |
+
from typing import List, Optional, Tuple, Union
|
| 26 |
+
import torch.nn.functional as F
|
| 27 |
+
import torch.utils.checkpoint
|
| 28 |
+
from torch import nn
|
| 29 |
+
|
| 30 |
+
from transformers.activations import ACT2FN
|
| 31 |
+
from huggingface_hub import hf_hub_download
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
from .configs import EConfig
|
| 36 |
+
from .utils_c import *
|
| 37 |
+
from .choices import *
|
| 38 |
+
except:
|
| 39 |
+
from configs import EConfig
|
| 40 |
+
from utils_c import *
|
| 41 |
+
from choices import *
|
| 42 |
+
from utils import prepare_logits_processor
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 48 |
+
def _make_causal_mask(
|
| 49 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 50 |
+
):
|
| 51 |
+
"""
|
| 52 |
+
Make causal mask used for bi-directional self-attention.
|
| 53 |
+
"""
|
| 54 |
+
bsz, tgt_len = input_ids_shape
|
| 55 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
| 56 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 57 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 58 |
+
mask = mask.to(dtype)
|
| 59 |
+
|
| 60 |
+
if past_key_values_length > 0:
|
| 61 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 62 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 66 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 67 |
+
"""
|
| 68 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 69 |
+
"""
|
| 70 |
+
bsz, src_len = mask.size()
|
| 71 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 72 |
+
|
| 73 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 74 |
+
|
| 75 |
+
inverted_mask = 1.0 - expanded_mask
|
| 76 |
+
|
| 77 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 81 |
+
"""
|
| 82 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 83 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 84 |
+
"""
|
| 85 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 86 |
+
if n_rep == 1:
|
| 87 |
+
return hidden_states
|
| 88 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 89 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def rotate_half(x):
|
| 93 |
+
"""Rotates half the hidden dims of the input."""
|
| 94 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 95 |
+
x2 = x[..., x.shape[-1] // 2:]
|
| 96 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
| 100 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
| 101 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 102 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 103 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
| 104 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
| 105 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 106 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 107 |
+
return q_embed, k_embed
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
| 111 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 112 |
+
super().__init__()
|
| 113 |
+
|
| 114 |
+
self.dim = dim
|
| 115 |
+
self.max_position_embeddings = max_position_embeddings
|
| 116 |
+
self.base = base
|
| 117 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 118 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 119 |
+
|
| 120 |
+
# Build here to make `torch.jit.trace` work.
|
| 121 |
+
self._set_cos_sin_cache(
|
| 122 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 126 |
+
self.max_seq_len_cached = seq_len
|
| 127 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 128 |
+
|
| 129 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 130 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 131 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 132 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 133 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 134 |
+
|
| 135 |
+
def forward(self, x, seq_len=None):
|
| 136 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 137 |
+
if seq_len > self.max_seq_len_cached:
|
| 138 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 139 |
+
|
| 140 |
+
return (
|
| 141 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 142 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
| 147 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 148 |
+
|
| 149 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 150 |
+
self.scaling_factor = scaling_factor
|
| 151 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 152 |
+
|
| 153 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 154 |
+
self.max_seq_len_cached = seq_len
|
| 155 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 156 |
+
t = t / self.scaling_factor
|
| 157 |
+
|
| 158 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 159 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 160 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 161 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 162 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
| 166 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
| 167 |
+
|
| 168 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 169 |
+
self.scaling_factor = scaling_factor
|
| 170 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 171 |
+
|
| 172 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 173 |
+
self.max_seq_len_cached = seq_len
|
| 174 |
+
|
| 175 |
+
if seq_len > self.max_position_embeddings:
|
| 176 |
+
base = self.base * (
|
| 177 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 178 |
+
) ** (self.dim / (self.dim - 2))
|
| 179 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 180 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 181 |
+
|
| 182 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 183 |
+
|
| 184 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 185 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 186 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 187 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 188 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class LlamaAttention(nn.Module):
|
| 192 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 193 |
+
|
| 194 |
+
def __init__(self, config):
|
| 195 |
+
super().__init__()
|
| 196 |
+
self.config = config
|
| 197 |
+
self.hidden_size = config.hidden_size
|
| 198 |
+
self.num_heads = config.num_attention_heads
|
| 199 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 200 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 201 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 202 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 203 |
+
|
| 204 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 205 |
+
raise ValueError(
|
| 206 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 207 |
+
f" and `num_heads`: {self.num_heads})."
|
| 208 |
+
)
|
| 209 |
+
if hasattr(config, "qkv_bias"):
|
| 210 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.qkv_bias)
|
| 211 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.qkv_bias)
|
| 212 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.qkv_bias)
|
| 213 |
+
else:
|
| 214 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 215 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 216 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 217 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 218 |
+
self._init_rope()
|
| 219 |
+
|
| 220 |
+
def _init_rope(self):
|
| 221 |
+
if self.config.rope_scaling is None:
|
| 222 |
+
if hasattr(self.config, "rope_theta"):
|
| 223 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim,
|
| 224 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 225 |
+
base=self.config.rope_theta)
|
| 226 |
+
else:
|
| 227 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim,
|
| 228 |
+
max_position_embeddings=self.max_position_embeddings)
|
| 229 |
+
else:
|
| 230 |
+
scaling_type = self.config.rope_scaling["type"]
|
| 231 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
| 232 |
+
if scaling_type == "linear":
|
| 233 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
| 234 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
| 235 |
+
)
|
| 236 |
+
elif scaling_type == "dynamic":
|
| 237 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
| 238 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
| 239 |
+
)
|
| 240 |
+
else:
|
| 241 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
| 242 |
+
|
| 243 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 244 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 245 |
+
|
| 246 |
+
def forward(
|
| 247 |
+
self,
|
| 248 |
+
hidden_states: torch.Tensor,
|
| 249 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 250 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 251 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 252 |
+
output_attentions: bool = False,
|
| 253 |
+
use_cache: bool = False,
|
| 254 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 255 |
+
bsz, q_len, _ = hidden_states.size()
|
| 256 |
+
|
| 257 |
+
if self.config.pretraining_tp > 1:
|
| 258 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
| 259 |
+
query_slices = self.q_proj.weight.split(
|
| 260 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
| 261 |
+
)
|
| 262 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
| 263 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
| 264 |
+
|
| 265 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 266 |
+
query_states = torch.cat(query_states, dim=-1)
|
| 267 |
+
|
| 268 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 269 |
+
key_states = torch.cat(key_states, dim=-1)
|
| 270 |
+
|
| 271 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 272 |
+
value_states = torch.cat(value_states, dim=-1)
|
| 273 |
+
|
| 274 |
+
else:
|
| 275 |
+
query_states = self.q_proj(hidden_states)
|
| 276 |
+
key_states = self.k_proj(hidden_states)
|
| 277 |
+
value_states = self.v_proj(hidden_states)
|
| 278 |
+
|
| 279 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 280 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 281 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 282 |
+
|
| 283 |
+
kv_seq_len = key_states.shape[-2]
|
| 284 |
+
if past_key_value is not None:
|
| 285 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 286 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 287 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 288 |
+
|
| 289 |
+
if past_key_value is not None:
|
| 290 |
+
# reuse k, v, self_attention
|
| 291 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 292 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 293 |
+
|
| 294 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 295 |
+
|
| 296 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 297 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 298 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 299 |
+
|
| 300 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 301 |
+
|
| 302 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 303 |
+
raise ValueError(
|
| 304 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 305 |
+
f" {attn_weights.size()}"
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
if attention_mask is not None:
|
| 309 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 310 |
+
raise ValueError(
|
| 311 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 312 |
+
)
|
| 313 |
+
attn_weights = attn_weights + attention_mask
|
| 314 |
+
|
| 315 |
+
# upcast attention to fp32
|
| 316 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 317 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 318 |
+
|
| 319 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 320 |
+
raise ValueError(
|
| 321 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 322 |
+
f" {attn_output.size()}"
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 326 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 327 |
+
|
| 328 |
+
if self.config.pretraining_tp > 1:
|
| 329 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
| 330 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
| 331 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
| 332 |
+
else:
|
| 333 |
+
attn_output = self.o_proj(attn_output)
|
| 334 |
+
|
| 335 |
+
if not output_attentions:
|
| 336 |
+
attn_weights = None
|
| 337 |
+
|
| 338 |
+
return attn_output, attn_weights, past_key_value
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
class LlamaMLP(nn.Module):
|
| 342 |
+
def __init__(self, config):
|
| 343 |
+
super().__init__()
|
| 344 |
+
self.config = config
|
| 345 |
+
self.hidden_size = config.hidden_size
|
| 346 |
+
self.intermediate_size = config.intermediate_size
|
| 347 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 348 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 349 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 350 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 351 |
+
|
| 352 |
+
def forward(self, x):
|
| 353 |
+
if self.config.pretraining_tp > 1:
|
| 354 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
| 355 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
| 356 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
| 357 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
| 358 |
+
|
| 359 |
+
gate_proj = torch.cat(
|
| 360 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
| 361 |
+
)
|
| 362 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
| 363 |
+
|
| 364 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
| 365 |
+
down_proj = [
|
| 366 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
| 367 |
+
]
|
| 368 |
+
down_proj = sum(down_proj)
|
| 369 |
+
else:
|
| 370 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 371 |
+
|
| 372 |
+
return down_proj
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
class LlamaRMSNorm(nn.Module):
|
| 376 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 377 |
+
"""
|
| 378 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
| 379 |
+
"""
|
| 380 |
+
super().__init__()
|
| 381 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 382 |
+
self.variance_epsilon = eps
|
| 383 |
+
|
| 384 |
+
def forward(self, hidden_states):
|
| 385 |
+
input_dtype = hidden_states.dtype
|
| 386 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 387 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 388 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 389 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
class LlamaDecoderLayer(nn.Module):
|
| 393 |
+
def __init__(self, config, index):
|
| 394 |
+
super().__init__()
|
| 395 |
+
self.hidden_size = config.hidden_size
|
| 396 |
+
self.self_attn = LlamaAttention(config=config)
|
| 397 |
+
self.mlp = LlamaMLP(config)
|
| 398 |
+
self.index = index
|
| 399 |
+
if self.index != 0:
|
| 400 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 401 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 402 |
+
|
| 403 |
+
def forward(
|
| 404 |
+
self,
|
| 405 |
+
hidden_states: torch.Tensor,
|
| 406 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 407 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 408 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 409 |
+
output_attentions: Optional[bool] = False,
|
| 410 |
+
use_cache: Optional[bool] = False,
|
| 411 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 412 |
+
"""
|
| 413 |
+
Args:
|
| 414 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 415 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 416 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 417 |
+
output_attentions (`bool`, *optional*):
|
| 418 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 419 |
+
returned tensors for more detail.
|
| 420 |
+
use_cache (`bool`, *optional*):
|
| 421 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 422 |
+
(see `past_key_values`).
|
| 423 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 424 |
+
"""
|
| 425 |
+
|
| 426 |
+
residual = hidden_states
|
| 427 |
+
|
| 428 |
+
if self.index != 0:
|
| 429 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 430 |
+
|
| 431 |
+
# Self Attention
|
| 432 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 433 |
+
hidden_states=hidden_states,
|
| 434 |
+
attention_mask=attention_mask,
|
| 435 |
+
position_ids=position_ids,
|
| 436 |
+
past_key_value=past_key_value,
|
| 437 |
+
output_attentions=output_attentions,
|
| 438 |
+
use_cache=use_cache,
|
| 439 |
+
)
|
| 440 |
+
hidden_states = residual + hidden_states
|
| 441 |
+
|
| 442 |
+
# Fully Connected
|
| 443 |
+
residual = hidden_states
|
| 444 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 445 |
+
hidden_states = self.mlp(hidden_states)
|
| 446 |
+
hidden_states = residual + hidden_states
|
| 447 |
+
|
| 448 |
+
outputs = (hidden_states,)
|
| 449 |
+
|
| 450 |
+
if output_attentions:
|
| 451 |
+
outputs += (self_attn_weights,)
|
| 452 |
+
|
| 453 |
+
if use_cache:
|
| 454 |
+
outputs += (present_key_value,)
|
| 455 |
+
|
| 456 |
+
return outputs
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
class I(nn.Module):
|
| 460 |
+
def __init__(self):
|
| 461 |
+
super().__init__()
|
| 462 |
+
self.dummy = nn.Parameter(torch.ones(1, dtype=torch.float32))
|
| 463 |
+
|
| 464 |
+
def forward(self, x):
|
| 465 |
+
return x + self.dummy - self.dummy # (also tried x+self.dummy)
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def len_list(x, n):
|
| 469 |
+
return [i for i in x if len(i) <= n]
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
class Model(nn.Module):
|
| 473 |
+
def __init__(self, config, load_emb=False, path=None, bias=True, total_tokens=63, depth=5, top_k=8, threshold=1.0):
|
| 474 |
+
super().__init__()
|
| 475 |
+
|
| 476 |
+
self.gradient_checkpointing = True
|
| 477 |
+
self.padding_idx = config.pad_token_id
|
| 478 |
+
self.vocab_size = config.vocab_size
|
| 479 |
+
|
| 480 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 481 |
+
if load_emb:
|
| 482 |
+
from safetensors import safe_open
|
| 483 |
+
import json
|
| 484 |
+
try:
|
| 485 |
+
index_json_path = os.path.join(path, "model.safetensors.index.json")
|
| 486 |
+
if not os.path.exists(index_json_path):
|
| 487 |
+
index_json_path = hf_hub_download(path, "model.safetensors.index.json")
|
| 488 |
+
with open(index_json_path, "r") as f:
|
| 489 |
+
index_json = json.loads(f.read())
|
| 490 |
+
emb_path = index_json["weight_map"]["model.embed_tokens.weight"]
|
| 491 |
+
local_emb_path = os.path.join(path, emb_path)
|
| 492 |
+
if not os.path.exists(local_emb_path):
|
| 493 |
+
local_emb_path = hf_hub_download(path, emb_path)
|
| 494 |
+
with safe_open(local_emb_path,
|
| 495 |
+
framework="pt",
|
| 496 |
+
device="cpu") as f:
|
| 497 |
+
tensor_slice = f.get_slice("model.embed_tokens.weight")
|
| 498 |
+
vocab_size, hidden_dim = tensor_slice.get_shape()
|
| 499 |
+
tensor = tensor_slice[:, :hidden_dim].float()
|
| 500 |
+
except:
|
| 501 |
+
index_json_path = os.path.join(path, "pytorch_model.bin.index.json")
|
| 502 |
+
if not os.path.exists(index_json_path):
|
| 503 |
+
index_json_path = hf_hub_download(path, "pytorch_model.bin.index.json")
|
| 504 |
+
with open(index_json_path, "r") as f:
|
| 505 |
+
index_json = json.loads(f.read())
|
| 506 |
+
emb_path = index_json["weight_map"]["model.embed_tokens.weight"]
|
| 507 |
+
local_emb_path = os.path.join(path, emb_path)
|
| 508 |
+
if not os.path.exists(local_emb_path):
|
| 509 |
+
local_emb_path = hf_hub_download(path, emb_path)
|
| 510 |
+
weights = torch.load(local_emb_path)
|
| 511 |
+
tensor = weights["model.embed_tokens.weight"].float()
|
| 512 |
+
self.embed_tokens.weight.data = tensor
|
| 513 |
+
|
| 514 |
+
self.top_k = top_k
|
| 515 |
+
self.total_tokens = total_tokens - 1
|
| 516 |
+
self.depth = depth
|
| 517 |
+
self.threshold = math.log(threshold)
|
| 518 |
+
# print("total_tokens",total_tokens)
|
| 519 |
+
# print("depth",depth)
|
| 520 |
+
# print("top_k",top_k)
|
| 521 |
+
# print("threshold",threshold)
|
| 522 |
+
|
| 523 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config, index) for index in range(config.num_hidden_layers)])
|
| 524 |
+
self.fc = nn.Linear(2 * config.hidden_size, config.hidden_size, bias=bias)
|
| 525 |
+
self.act = ACT2FN[config.hidden_act]
|
| 526 |
+
self.logsoftmax = nn.LogSoftmax(dim=-1)
|
| 527 |
+
for param in self.embed_tokens.parameters():
|
| 528 |
+
param.requires_grad = False
|
| 529 |
+
|
| 530 |
+
def init_tree(self):
|
| 531 |
+
self.tree_mask_init = torch.eye(self.top_k, device=self.embed_tokens.weight.device)[None, None]
|
| 532 |
+
self.position_ids = torch.zeros(self.top_k, device=self.embed_tokens.weight.device, dtype=torch.long)
|
| 533 |
+
self.tree_mask_init = self.tree_mask_init.to(self.embed_tokens.weight.device)
|
| 534 |
+
|
| 535 |
+
def reset(self):
|
| 536 |
+
self.tree_mask = None
|
| 537 |
+
|
| 538 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 539 |
+
# create causal mask
|
| 540 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 541 |
+
combined_attention_mask = None
|
| 542 |
+
if input_shape[-1] > 1:
|
| 543 |
+
combined_attention_mask = _make_causal_mask(
|
| 544 |
+
input_shape,
|
| 545 |
+
# inputs_embeds.dtype,
|
| 546 |
+
torch.float32, # [MODIFIED] force to cast to float32
|
| 547 |
+
device=inputs_embeds.device,
|
| 548 |
+
past_key_values_length=past_key_values_length,
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
if attention_mask is not None:
|
| 552 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 553 |
+
expanded_attn_mask = _expand_mask(attention_mask, torch.float32, tgt_len=input_shape[-1]).to(
|
| 554 |
+
inputs_embeds.device
|
| 555 |
+
)
|
| 556 |
+
combined_attention_mask = (
|
| 557 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
# [MODIFIED] add tree mask
|
| 561 |
+
if hasattr(self, "tree_mask") and self.tree_mask is not None:
|
| 562 |
+
tree_mask = self.tree_mask
|
| 563 |
+
_, _, tree_shape0, tree_shape1 = tree_mask.shape
|
| 564 |
+
combined_attention_mask[:, :, -tree_shape0:, -tree_shape1:][
|
| 565 |
+
tree_mask == 0
|
| 566 |
+
] = torch.finfo(torch.float32).min
|
| 567 |
+
|
| 568 |
+
return combined_attention_mask
|
| 569 |
+
|
| 570 |
+
def forward(
|
| 571 |
+
self,
|
| 572 |
+
hidden_states,
|
| 573 |
+
input_ids,
|
| 574 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 575 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 576 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 577 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 578 |
+
use_cache: Optional[bool] = None,
|
| 579 |
+
output_attentions: Optional[bool] = None,
|
| 580 |
+
output_hidden_states: Optional[bool] = None,
|
| 581 |
+
return_dict: Optional[bool] = None,
|
| 582 |
+
std=None
|
| 583 |
+
):
|
| 584 |
+
batch_size, seq_length, _ = hidden_states.shape
|
| 585 |
+
seq_length_with_past = seq_length
|
| 586 |
+
past_key_values_length = 0
|
| 587 |
+
|
| 588 |
+
with torch.no_grad():
|
| 589 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 590 |
+
# inputs_embeds = inputs_embeds.detach()
|
| 591 |
+
|
| 592 |
+
# if std is not None:
|
| 593 |
+
# noise = torch.randn(inputs_embeds.size(),device=inputs_embeds.device) * std
|
| 594 |
+
# inputs_embeds=inputs_embeds+noise
|
| 595 |
+
|
| 596 |
+
if past_key_values is not None:
|
| 597 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 598 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 599 |
+
if position_ids is None:
|
| 600 |
+
device = hidden_states.device if hidden_states is not None else inputs_embeds.device
|
| 601 |
+
position_ids = torch.arange(
|
| 602 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 603 |
+
)
|
| 604 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 605 |
+
else:
|
| 606 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 607 |
+
|
| 608 |
+
#position_ids=position_ids//4
|
| 609 |
+
if attention_mask is None:
|
| 610 |
+
attention_mask = torch.ones(
|
| 611 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=hidden_states.device
|
| 612 |
+
)
|
| 613 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 614 |
+
attention_mask, (batch_size, seq_length), hidden_states, past_key_values_length
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
# if self.gradient_checkpointing and self.training:
|
| 618 |
+
# if use_cache:
|
| 619 |
+
# use_cache = False
|
| 620 |
+
|
| 621 |
+
# hidden_states=self.act(self.fc(torch.cat((inputs_embeds,hidden_states),dim=-1)))
|
| 622 |
+
inputs_embeds = inputs_embeds.to(hidden_states.dtype)
|
| 623 |
+
hidden_states = self.fc(torch.cat((inputs_embeds, hidden_states), dim=-1))
|
| 624 |
+
|
| 625 |
+
all_hidden_states = () if output_hidden_states else None
|
| 626 |
+
next_decoder_cache = () if use_cache else None
|
| 627 |
+
|
| 628 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 629 |
+
if output_hidden_states:
|
| 630 |
+
all_hidden_states += (hidden_states,)
|
| 631 |
+
|
| 632 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 633 |
+
|
| 634 |
+
if self.gradient_checkpointing and self.training:
|
| 635 |
+
|
| 636 |
+
def create_custom_forward(module):
|
| 637 |
+
def custom_forward(*inputs):
|
| 638 |
+
# None for past_key_value
|
| 639 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 640 |
+
|
| 641 |
+
return custom_forward
|
| 642 |
+
|
| 643 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 644 |
+
create_custom_forward(decoder_layer),
|
| 645 |
+
hidden_states,
|
| 646 |
+
attention_mask,
|
| 647 |
+
position_ids,
|
| 648 |
+
)
|
| 649 |
+
else:
|
| 650 |
+
layer_outputs = decoder_layer(
|
| 651 |
+
hidden_states,
|
| 652 |
+
attention_mask=attention_mask,
|
| 653 |
+
position_ids=position_ids,
|
| 654 |
+
past_key_value=past_key_value,
|
| 655 |
+
output_attentions=output_attentions,
|
| 656 |
+
use_cache=use_cache,
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
hidden_states = layer_outputs[0]
|
| 660 |
+
|
| 661 |
+
if use_cache:
|
| 662 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 663 |
+
|
| 664 |
+
if use_cache:
|
| 665 |
+
return hidden_states, next_decoder_cache
|
| 666 |
+
|
| 667 |
+
return hidden_states
|
| 668 |
+
|
| 669 |
+
def reset_kv(self):
|
| 670 |
+
self.stable_kv = None
|
| 671 |
+
|
| 672 |
+
@torch.no_grad()
|
| 673 |
+
def topK_genrate(self, hidden_states, input_ids, head, logits_processor):
|
| 674 |
+
|
| 675 |
+
input_ids = input_ids.to(hidden_states.device)
|
| 676 |
+
total_tokens = self.total_tokens
|
| 677 |
+
depth = self.depth
|
| 678 |
+
top_k = self.top_k
|
| 679 |
+
|
| 680 |
+
sample_token = input_ids[:, -1]
|
| 681 |
+
|
| 682 |
+
scores_list = []
|
| 683 |
+
parents_list = []
|
| 684 |
+
ss_token = []
|
| 685 |
+
|
| 686 |
+
input_ids = input_ids[:, 1:]
|
| 687 |
+
input_ids = input_ids.to(hidden_states.device)
|
| 688 |
+
|
| 689 |
+
len_posi = input_ids.shape[1]
|
| 690 |
+
self.reset()
|
| 691 |
+
|
| 692 |
+
# with Timer("draft many"):
|
| 693 |
+
if hasattr(self, "stable_kv") and self.stable_kv is not None:
|
| 694 |
+
kv_len = self.stable_kv[0][0].shape[2]
|
| 695 |
+
out_hidden, past_key_values = self(hidden_states, input_ids=input_ids[:, kv_len:],
|
| 696 |
+
past_key_values=self.stable_kv, use_cache=True)
|
| 697 |
+
else:
|
| 698 |
+
out_hidden, past_key_values = self(hidden_states, input_ids=input_ids, use_cache=True)
|
| 699 |
+
self.stable_kv = past_key_values
|
| 700 |
+
last_hidden = out_hidden[:, -1]
|
| 701 |
+
|
| 702 |
+
last_headout = head(last_hidden)
|
| 703 |
+
|
| 704 |
+
last_p = self.logsoftmax(last_headout)
|
| 705 |
+
top = torch.topk(last_p, top_k, dim=-1)
|
| 706 |
+
topk_index, topk_p = top.indices, top.values
|
| 707 |
+
scores = topk_p[0]
|
| 708 |
+
scores_list.append(scores[None])
|
| 709 |
+
parents_list.append(torch.zeros(1, dtype=torch.long, device=scores.device))
|
| 710 |
+
ss_token.append(topk_index)
|
| 711 |
+
input_ids = topk_index
|
| 712 |
+
input_hidden = last_hidden[None].repeat(1, top_k, 1)
|
| 713 |
+
tree_mask = self.tree_mask_init
|
| 714 |
+
topk_cs_index = torch.arange(top_k, device=self.embed_tokens.weight.device)
|
| 715 |
+
|
| 716 |
+
# 4
|
| 717 |
+
for i in range(depth):
|
| 718 |
+
self.tree_mask = tree_mask
|
| 719 |
+
position_ids = len_posi + self.position_ids
|
| 720 |
+
# with Timer("draft one"):
|
| 721 |
+
out_hidden, past_key_values = self(input_hidden, input_ids=input_ids, past_key_values=past_key_values,
|
| 722 |
+
position_ids=position_ids, use_cache=True)
|
| 723 |
+
len_posi += 1
|
| 724 |
+
|
| 725 |
+
# with Timer("sort1"):
|
| 726 |
+
bias1 = top_k if i > 0 else 0
|
| 727 |
+
bias2 = max(0, i - 1)
|
| 728 |
+
bias = 1 + top_k ** 2 * bias2 + bias1
|
| 729 |
+
parents = (topk_cs_index + bias)
|
| 730 |
+
parents_list.append(parents)
|
| 731 |
+
|
| 732 |
+
last_headout = head(out_hidden[0])
|
| 733 |
+
last_p = self.logsoftmax(last_headout)
|
| 734 |
+
|
| 735 |
+
top = torch.topk(last_p, top_k, dim=-1)
|
| 736 |
+
topk_index, topk_p = top.indices, top.values
|
| 737 |
+
|
| 738 |
+
cu_scores = topk_p + scores[:, None]
|
| 739 |
+
|
| 740 |
+
topk_cs = torch.topk(cu_scores.view(-1), top_k, dim=-1)
|
| 741 |
+
topk_cs_index, topk_cs_p = topk_cs.indices, topk_cs.values
|
| 742 |
+
scores = topk_cs_p
|
| 743 |
+
|
| 744 |
+
out_ids = topk_cs_index // top_k
|
| 745 |
+
input_hidden = out_hidden[:, out_ids]
|
| 746 |
+
|
| 747 |
+
input_ids = topk_index.view(-1)[topk_cs_index][None]
|
| 748 |
+
|
| 749 |
+
ss_token.append(topk_index)
|
| 750 |
+
scores_list.append(cu_scores)
|
| 751 |
+
tree_mask = torch.cat((tree_mask[:, :, out_ids], self.tree_mask_init), dim=3)
|
| 752 |
+
|
| 753 |
+
|
| 754 |
+
|
| 755 |
+
scores_list = torch.cat(scores_list, dim=0).view(-1)
|
| 756 |
+
ss_token_list = torch.cat(ss_token, dim=0).view(-1)
|
| 757 |
+
top_scores = torch.topk(scores_list, total_tokens, dim=-1)
|
| 758 |
+
top_scores_index = top_scores.indices
|
| 759 |
+
top_scores_index = torch.sort(top_scores_index).values
|
| 760 |
+
|
| 761 |
+
draft_tokens = ss_token_list[top_scores_index]
|
| 762 |
+
draft_tokens = torch.cat((sample_token, draft_tokens), dim=0)
|
| 763 |
+
|
| 764 |
+
draft_parents = torch.cat(parents_list, dim=0)[top_scores_index // top_k].long()
|
| 765 |
+
mask_index = torch.searchsorted(top_scores_index, draft_parents - 1, right=False)
|
| 766 |
+
# mask_index[(top_scores_index[mask_index]!=draft_parents - 1)]=-1
|
| 767 |
+
mask_index[draft_parents == 0] = -1
|
| 768 |
+
mask_index = mask_index + 1
|
| 769 |
+
mask_index_list = mask_index.tolist()
|
| 770 |
+
# with Timer("mask"):
|
| 771 |
+
tree_mask = torch.eye(total_tokens + 1).bool()
|
| 772 |
+
tree_mask[:, 0] = True
|
| 773 |
+
for i in range(total_tokens):
|
| 774 |
+
tree_mask[i + 1].add_(tree_mask[mask_index_list[i]])
|
| 775 |
+
|
| 776 |
+
|
| 777 |
+
tree_position_ids = torch.sum(tree_mask, dim=1) - 1
|
| 778 |
+
|
| 779 |
+
tree_mask = tree_mask.float()[None, None]
|
| 780 |
+
draft_tokens = draft_tokens[None]
|
| 781 |
+
|
| 782 |
+
del parents_list, scores_list, ss_token, ss_token_list, draft_parents
|
| 783 |
+
|
| 784 |
+
# with Timer("retrieve"):
|
| 785 |
+
|
| 786 |
+
max_depth = torch.max(tree_position_ids) + 1
|
| 787 |
+
noleaf_index = torch.unique(mask_index).tolist()
|
| 788 |
+
noleaf_num = len(noleaf_index) - 1
|
| 789 |
+
leaf_num = total_tokens - noleaf_num
|
| 790 |
+
|
| 791 |
+
retrieve_indices = torch.zeros(leaf_num, max_depth.item(), dtype=torch.long) - 1
|
| 792 |
+
retrieve_indices = retrieve_indices.tolist()
|
| 793 |
+
|
| 794 |
+
rid = 0
|
| 795 |
+
position_ids_list = tree_position_ids.tolist()
|
| 796 |
+
|
| 797 |
+
for i in range(total_tokens + 1):
|
| 798 |
+
if i not in noleaf_index:
|
| 799 |
+
cid = i
|
| 800 |
+
depth = position_ids_list[i]
|
| 801 |
+
for j in reversed(range(depth + 1)):
|
| 802 |
+
retrieve_indices[rid][j] = cid
|
| 803 |
+
cid = mask_index_list[cid - 1]
|
| 804 |
+
rid += 1
|
| 805 |
+
|
| 806 |
+
if logits_processor is not None:
|
| 807 |
+
maxitem = total_tokens + 5
|
| 808 |
+
|
| 809 |
+
def custom_sort(lst):
|
| 810 |
+
# sort_keys=[len(list)]
|
| 811 |
+
sort_keys = []
|
| 812 |
+
for i in range(len(lst)):
|
| 813 |
+
sort_keys.append(lst[i] if lst[i] >= 0 else maxitem)
|
| 814 |
+
return sort_keys
|
| 815 |
+
|
| 816 |
+
retrieve_indices = sorted(retrieve_indices, key=custom_sort)
|
| 817 |
+
|
| 818 |
+
retrieve_indices = torch.tensor(retrieve_indices, dtype=torch.long)
|
| 819 |
+
del mask_index, mask_index_list, noleaf_index, noleaf_num, leaf_num, max_depth, rid
|
| 820 |
+
tree_position_ids = tree_position_ids.to(hidden_states.device)
|
| 821 |
+
|
| 822 |
+
return draft_tokens, retrieve_indices, tree_mask, tree_position_ids
|
| 823 |
+
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
|
| 828 |
+
def count_parameters(model):
|
| 829 |
+
return sum(p.numel() for p in model.parameters())
|
| 830 |
+
|
| 831 |
+
|
| 832 |
+
if __name__ == "__main__":
|
| 833 |
+
config = EConfig.from_pretrained('config.json')
|
| 834 |
+
model = Model(config, load_emb=False)
|
| 835 |
+
print(model)
|
eagle/model/configs.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
+
class EConfig(PretrainedConfig):
|
| 3 |
+
r"""
|
| 4 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
| 5 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 6 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
| 7 |
+
|
| 8 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 9 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 14 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
| 15 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
| 16 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 17 |
+
Dimension of the hidden representations.
|
| 18 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 19 |
+
Dimension of the MLP representations.
|
| 20 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 21 |
+
Number of hidden layers in the Transformer encoder.
|
| 22 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 23 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 24 |
+
num_key_value_heads (`int`, *optional*):
|
| 25 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 26 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 27 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 28 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 29 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 30 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 31 |
+
`num_attention_heads`.
|
| 32 |
+
pretraining_tp (`int`, *optional*, defaults to `1`):
|
| 33 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 34 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
| 35 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
| 36 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 37 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 38 |
+
The non-linear activation function (function or string) in the decoder.
|
| 39 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 40 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 41 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 42 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 43 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 44 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 45 |
+
The epsilon used by the rms normalization layers.
|
| 46 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 47 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 48 |
+
relevant if `config.is_decoder=True`.
|
| 49 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
| 50 |
+
Whether to tie weight embeddings
|
| 51 |
+
rope_scaling (`Dict`, *optional*):
|
| 52 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 53 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
| 54 |
+
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 55 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
| 56 |
+
these scaling strategies behave:
|
| 57 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
| 58 |
+
experimental feature, subject to breaking API changes in future versions.
|
| 59 |
+
|
| 60 |
+
Example:
|
| 61 |
+
|
| 62 |
+
```python
|
| 63 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
| 64 |
+
|
| 65 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
| 66 |
+
>>> configuration = LlamaConfig()
|
| 67 |
+
|
| 68 |
+
>>> # Initializing a model from the llama-7b style configuration
|
| 69 |
+
>>> model = LlamaModel(configuration)
|
| 70 |
+
|
| 71 |
+
>>> # Accessing the model configuration
|
| 72 |
+
>>> configuration = model.config
|
| 73 |
+
```"""
|
| 74 |
+
model_type = "llama"
|
| 75 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 76 |
+
|
| 77 |
+
def __init__(
|
| 78 |
+
self,
|
| 79 |
+
vocab_size=32000,
|
| 80 |
+
hidden_size=4096,
|
| 81 |
+
intermediate_size=11008,
|
| 82 |
+
num_hidden_layers=32,
|
| 83 |
+
num_attention_heads=32,
|
| 84 |
+
num_key_value_heads=None,
|
| 85 |
+
hidden_act="silu",
|
| 86 |
+
max_position_embeddings=2048,
|
| 87 |
+
initializer_range=0.02,
|
| 88 |
+
rms_norm_eps=1e-6,
|
| 89 |
+
use_cache=True,
|
| 90 |
+
pad_token_id=None,
|
| 91 |
+
bos_token_id=1,
|
| 92 |
+
eos_token_id=2,
|
| 93 |
+
pretraining_tp=1,
|
| 94 |
+
tie_word_embeddings=False,
|
| 95 |
+
rope_scaling=None,
|
| 96 |
+
rope_theta=10000,
|
| 97 |
+
**kwargs,
|
| 98 |
+
):
|
| 99 |
+
self.vocab_size = vocab_size
|
| 100 |
+
self.max_position_embeddings = max_position_embeddings
|
| 101 |
+
self.hidden_size = hidden_size
|
| 102 |
+
self.intermediate_size = intermediate_size
|
| 103 |
+
self.num_hidden_layers = num_hidden_layers
|
| 104 |
+
self.num_attention_heads = num_attention_heads
|
| 105 |
+
|
| 106 |
+
# for backward compatibility
|
| 107 |
+
if num_key_value_heads is None:
|
| 108 |
+
num_key_value_heads = num_attention_heads
|
| 109 |
+
|
| 110 |
+
self.num_key_value_heads = num_key_value_heads
|
| 111 |
+
self.hidden_act = hidden_act
|
| 112 |
+
self.initializer_range = initializer_range
|
| 113 |
+
self.rms_norm_eps = rms_norm_eps
|
| 114 |
+
self.pretraining_tp = pretraining_tp
|
| 115 |
+
self.use_cache = use_cache
|
| 116 |
+
self.rope_scaling = rope_scaling
|
| 117 |
+
self.rope_theta = rope_theta
|
| 118 |
+
# self._rope_scaling_validation()
|
| 119 |
+
|
| 120 |
+
super().__init__(
|
| 121 |
+
pad_token_id=pad_token_id,
|
| 122 |
+
bos_token_id=bos_token_id,
|
| 123 |
+
eos_token_id=eos_token_id,
|
| 124 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 125 |
+
**kwargs,
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# def _rope_scaling_validation(self):
|
| 129 |
+
# """
|
| 130 |
+
# Validate the `rope_scaling` configuration.
|
| 131 |
+
# """
|
| 132 |
+
# if self.rope_scaling is None:
|
| 133 |
+
# return
|
| 134 |
+
|
| 135 |
+
# if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 136 |
+
# raise ValueError(
|
| 137 |
+
# "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
|
| 138 |
+
# f"got {self.rope_scaling}"
|
| 139 |
+
# )
|
| 140 |
+
# rope_scaling_type = self.rope_scaling.get("type", None)
|
| 141 |
+
# rope_scaling_factor = self.rope_scaling.get("factor", None)
|
| 142 |
+
# if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
| 143 |
+
# raise ValueError(
|
| 144 |
+
# f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 145 |
+
# )
|
| 146 |
+
# if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
| 147 |
+
# raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|
eagle/model/configuration_minicpm.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" MiniCPM model configuration"""
|
| 16 |
+
|
| 17 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 18 |
+
from transformers.utils import logging
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__)
|
| 21 |
+
|
| 22 |
+
MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class MiniCPMConfig(PretrainedConfig):
|
| 26 |
+
r"""
|
| 27 |
+
This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
|
| 28 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 29 |
+
defaults will yield a similar configuration to that of the MiniCPM-7B.
|
| 30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 31 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 32 |
+
Args:
|
| 33 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 34 |
+
Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
|
| 35 |
+
`inputs_ids` passed when calling [`MiniCPMModel`]
|
| 36 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 37 |
+
Dimension of the hidden representations.
|
| 38 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 39 |
+
Dimension of the MLP representations.
|
| 40 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 41 |
+
Number of hidden layers in the Transformer decoder.
|
| 42 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 43 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 44 |
+
num_key_value_heads (`int`, *optional*):
|
| 45 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 46 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 47 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 48 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 49 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 50 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 51 |
+
`num_attention_heads`.
|
| 52 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 53 |
+
The non-linear activation function (function or string) in the decoder.
|
| 54 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 55 |
+
The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
|
| 56 |
+
MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
|
| 57 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 58 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 59 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 60 |
+
The epsilon used by the rms normalization layers.
|
| 61 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 62 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 63 |
+
relevant if `config.is_decoder=True`.
|
| 64 |
+
pad_token_id (`int`, *optional*):
|
| 65 |
+
Padding token id.
|
| 66 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 67 |
+
Beginning of stream token id.
|
| 68 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 69 |
+
End of stream token id.
|
| 70 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 71 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 72 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
| 73 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
| 74 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 75 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 76 |
+
Whether to tie weight embeddings
|
| 77 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 78 |
+
The base period of the RoPE embeddings.
|
| 79 |
+
rope_scaling (`Dict`, *optional*):
|
| 80 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 81 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
| 82 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 83 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
| 84 |
+
these scaling strategies behave:
|
| 85 |
+
https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
| 86 |
+
experimental feature, subject to breaking API changes in future versions.
|
| 87 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 88 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 89 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 90 |
+
The dropout ratio for the attention probabilities.
|
| 91 |
+
```python
|
| 92 |
+
>>> from transformers import MiniCPMModel, MiniCPMConfig
|
| 93 |
+
>>> # Initializing a MiniCPM minicpm-7b style configuration
|
| 94 |
+
>>> configuration = MiniCPMConfig()
|
| 95 |
+
>>> # Initializing a model from the minicpm-7b style configuration
|
| 96 |
+
>>> model = MiniCPMModel(configuration)
|
| 97 |
+
>>> # Accessing the model configuration
|
| 98 |
+
>>> configuration = model.config
|
| 99 |
+
```"""
|
| 100 |
+
|
| 101 |
+
model_type = 'minicpm'
|
| 102 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
| 103 |
+
|
| 104 |
+
def __init__(
|
| 105 |
+
self,
|
| 106 |
+
vocab_size=32000,
|
| 107 |
+
hidden_size=4096,
|
| 108 |
+
intermediate_size=11008,
|
| 109 |
+
num_hidden_layers=32,
|
| 110 |
+
num_attention_heads=32,
|
| 111 |
+
num_key_value_heads=None,
|
| 112 |
+
hidden_act='silu',
|
| 113 |
+
max_position_embeddings=2048,
|
| 114 |
+
initializer_range=0.02,
|
| 115 |
+
rms_norm_eps=1e-6,
|
| 116 |
+
use_cache=True,
|
| 117 |
+
pad_token_id=None,
|
| 118 |
+
bos_token_id=1,
|
| 119 |
+
eos_token_id=2,
|
| 120 |
+
pretraining_tp=1,
|
| 121 |
+
tie_word_embeddings=True,
|
| 122 |
+
rope_theta=10000.0,
|
| 123 |
+
rope_scaling=None,
|
| 124 |
+
attention_bias=False,
|
| 125 |
+
attention_dropout=0.0,
|
| 126 |
+
scale_emb=1,
|
| 127 |
+
dim_model_base=1,
|
| 128 |
+
scale_depth=1,
|
| 129 |
+
mup_denominator=32,
|
| 130 |
+
sparse_config=None,
|
| 131 |
+
**kwargs):
|
| 132 |
+
|
| 133 |
+
self.vocab_size = vocab_size
|
| 134 |
+
self.max_position_embeddings = max_position_embeddings
|
| 135 |
+
self.hidden_size = hidden_size
|
| 136 |
+
self.intermediate_size = intermediate_size
|
| 137 |
+
self.num_hidden_layers = num_hidden_layers
|
| 138 |
+
self.num_attention_heads = num_attention_heads
|
| 139 |
+
|
| 140 |
+
# for backward compatibility
|
| 141 |
+
if num_key_value_heads is None:
|
| 142 |
+
num_key_value_heads = num_attention_heads
|
| 143 |
+
|
| 144 |
+
self.num_key_value_heads = num_key_value_heads
|
| 145 |
+
self.hidden_act = hidden_act
|
| 146 |
+
self.initializer_range = initializer_range
|
| 147 |
+
self.rms_norm_eps = rms_norm_eps
|
| 148 |
+
self.pretraining_tp = pretraining_tp
|
| 149 |
+
self.use_cache = use_cache
|
| 150 |
+
self.rope_theta = rope_theta
|
| 151 |
+
self.rope_scaling = rope_scaling
|
| 152 |
+
# self._rope_scaling_validation()
|
| 153 |
+
self.attention_bias = attention_bias
|
| 154 |
+
self.attention_dropout = attention_dropout
|
| 155 |
+
self.scale_emb = scale_emb
|
| 156 |
+
self.dim_model_base = dim_model_base
|
| 157 |
+
self.scale_depth = scale_depth
|
| 158 |
+
# only used for Eagle Head
|
| 159 |
+
self.mup_denominator = mup_denominator
|
| 160 |
+
|
| 161 |
+
# sparse config
|
| 162 |
+
self.sparse_config = sparse_config
|
| 163 |
+
|
| 164 |
+
super().__init__(
|
| 165 |
+
pad_token_id=pad_token_id,
|
| 166 |
+
bos_token_id=bos_token_id,
|
| 167 |
+
eos_token_id=eos_token_id,
|
| 168 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 169 |
+
**kwargs,
|
| 170 |
+
)
|
| 171 |
+
try:
|
| 172 |
+
import flash_attn
|
| 173 |
+
self._attn_implementation = 'flash_attention_2'
|
| 174 |
+
except:
|
| 175 |
+
pass
|
| 176 |
+
|
| 177 |
+
def _rope_scaling_validation(self):
|
| 178 |
+
"""
|
| 179 |
+
Validate the `rope_scaling` configuration.
|
| 180 |
+
"""
|
| 181 |
+
if self.rope_scaling is None:
|
| 182 |
+
return
|
| 183 |
+
|
| 184 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 185 |
+
raise ValueError(
|
| 186 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
| 187 |
+
f'got {self.rope_scaling}'
|
| 188 |
+
)
|
| 189 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
| 190 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
| 191 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
| 192 |
+
raise ValueError(
|
| 193 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 194 |
+
)
|
| 195 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
| 196 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
eagle/model/ea_model.py
ADDED
|
@@ -0,0 +1,582 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import json
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
from transformers import AutoTokenizer
|
| 9 |
+
import os
|
| 10 |
+
from transformers import PreTrainedModel, PretrainedConfig, AutoConfig
|
| 11 |
+
|
| 12 |
+
from .modeling_llama_kv import LlamaForCausalLM as KVLlamaForCausalLM
|
| 13 |
+
from .modeling_mixtral_kv import MixtralForCausalLM as KVMixtralForCausalLM
|
| 14 |
+
#from .modeling_qwen2_kv import LlamaForCausalLM as KVQwen2ForCausalLM
|
| 15 |
+
from .modeling_qwen2_kv import Qwen2ForCausalLM as KVQwen2ForCausalLM
|
| 16 |
+
from .utils import *
|
| 17 |
+
from .kv_cache import initialize_past_key_values
|
| 18 |
+
|
| 19 |
+
from .cnets import Model
|
| 20 |
+
from .cnets1 import Model as Model1
|
| 21 |
+
from .configs import EConfig
|
| 22 |
+
|
| 23 |
+
""" Modified to support Eagle-3, marked by <mod> xxx </mod> """
|
| 24 |
+
# from .modeling_minicpm_kv import HackConvertMiniCPMForCausalLM as KVMiniCPMForCausalLM # <mod> convert opensource impl to llama </mod>
|
| 25 |
+
from .modeling_minicpm_kv import MiniCPMForCausalLM as KVMiniCPMForCausalLM # <mod> use modified opensource impl </mod>
|
| 26 |
+
|
| 27 |
+
class EaModel(nn.Module):
|
| 28 |
+
|
| 29 |
+
def __init__(
|
| 30 |
+
self,
|
| 31 |
+
use_eagle3,
|
| 32 |
+
base_model,
|
| 33 |
+
base_model_name_or_path,
|
| 34 |
+
ea_model_path,
|
| 35 |
+
total_token,
|
| 36 |
+
depth,
|
| 37 |
+
top_k,
|
| 38 |
+
threshold,
|
| 39 |
+
ea_layer_state_dict,
|
| 40 |
+
):
|
| 41 |
+
|
| 42 |
+
super().__init__()
|
| 43 |
+
self.base_model = base_model
|
| 44 |
+
self.config = base_model.config
|
| 45 |
+
self.hidden_size = base_model.lm_head.weight.shape[-1]
|
| 46 |
+
self.vocab_size = base_model.lm_head.weight.shape[0]
|
| 47 |
+
self.base_model_name_or_path = base_model_name_or_path
|
| 48 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.base_model_name_or_path, use_fast=False)
|
| 49 |
+
self.use_eagle3 = use_eagle3
|
| 50 |
+
config = EConfig.from_pretrained(ea_model_path)
|
| 51 |
+
with open(ea_model_path, "r") as f:
|
| 52 |
+
con = json.loads(f.read())
|
| 53 |
+
try:
|
| 54 |
+
bias = con["bias"]
|
| 55 |
+
except:
|
| 56 |
+
bias = True
|
| 57 |
+
if use_eagle3:
|
| 58 |
+
self.ea_layer = Model(config, bias=bias, total_tokens=total_token, depth=depth, top_k=top_k,
|
| 59 |
+
threshold=threshold, path=base_model_name_or_path,load_emb=True)
|
| 60 |
+
else:
|
| 61 |
+
self.ea_layer = Model1(config, bias=bias, total_tokens=total_token, depth=depth, top_k=top_k,
|
| 62 |
+
threshold=threshold, path=base_model_name_or_path,load_emb=True)
|
| 63 |
+
|
| 64 |
+
low_memory = False
|
| 65 |
+
|
| 66 |
+
device = base_model.model.layers[-1].self_attn.q_proj.weight.device
|
| 67 |
+
if device != base_model.lm_head.weight.device:
|
| 68 |
+
self.ea_layer.diff_device = True
|
| 69 |
+
if not low_memory:
|
| 70 |
+
self.ea_layer.headweight = base_model.lm_head.weight.clone().to(device)
|
| 71 |
+
else:
|
| 72 |
+
self.ea_layer.layer_device = device
|
| 73 |
+
|
| 74 |
+
else:
|
| 75 |
+
self.ea_layer.diff_device = False
|
| 76 |
+
if self.use_eagle3 and config.vocab_size==config.draft_vocab_size:
|
| 77 |
+
del self.ea_layer.d2t,self.ea_layer.t2d
|
| 78 |
+
load_=self.ea_layer.load_state_dict(ea_layer_state_dict, strict=False)
|
| 79 |
+
self.ea_layer.to(self.base_model.dtype).to(device)
|
| 80 |
+
self.ea_layer.init_tree()
|
| 81 |
+
|
| 82 |
+
def get_tokenizer(self):
|
| 83 |
+
"""Get the tokenizer of the base model.
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
Tokenizer: The tokenizer of the base model.
|
| 87 |
+
"""
|
| 88 |
+
return self.tokenizer
|
| 89 |
+
|
| 90 |
+
@classmethod
|
| 91 |
+
def from_pretrained(
|
| 92 |
+
cls,
|
| 93 |
+
use_eagle3=True,
|
| 94 |
+
base_model_path=None,
|
| 95 |
+
ea_model_path=None,
|
| 96 |
+
total_token=60,
|
| 97 |
+
depth=7,
|
| 98 |
+
top_k=10,
|
| 99 |
+
threshold=1.0,
|
| 100 |
+
**kwargs,
|
| 101 |
+
):
|
| 102 |
+
# assert Type=="LLaMA" or "Mixtral"
|
| 103 |
+
Type = AutoConfig.from_pretrained(base_model_path, trust_remote_code=True).architectures[0]
|
| 104 |
+
|
| 105 |
+
if Type == 'LlamaForCausalLM':
|
| 106 |
+
base_model = KVLlamaForCausalLM.from_pretrained(
|
| 107 |
+
base_model_path, **kwargs
|
| 108 |
+
)
|
| 109 |
+
elif Type == 'Qwen2ForCausalLM':
|
| 110 |
+
base_model = KVQwen2ForCausalLM.from_pretrained(
|
| 111 |
+
base_model_path, **kwargs
|
| 112 |
+
)
|
| 113 |
+
elif Type == 'MiniCPMForCausalLM': # <mod> support MiniCPMForCausalLM
|
| 114 |
+
base_model = KVMiniCPMForCausalLM.from_pretrained(
|
| 115 |
+
base_model_path, torch_dtype=torch.bfloat16, device_map="cuda", trust_remote_code=True,
|
| 116 |
+
)
|
| 117 |
+
# </mod>
|
| 118 |
+
else:
|
| 119 |
+
base_model = KVMixtralForCausalLM.from_pretrained(
|
| 120 |
+
base_model_path, **kwargs
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# <mod>
|
| 124 |
+
# configpath = os.path.join(ea_model_path, "config.json")
|
| 125 |
+
# if not os.path.exists(configpath):
|
| 126 |
+
# configpath = hf_hub_download(ea_model_path, "config.json")
|
| 127 |
+
|
| 128 |
+
# try:
|
| 129 |
+
# load_model_path = os.path.join(ea_model_path, "pytorch_model.bin")
|
| 130 |
+
# if not os.path.exists(load_model_path):
|
| 131 |
+
# load_model_path = hf_hub_download(ea_model_path, "pytorch_model.bin")
|
| 132 |
+
# ea_layer_state_dict = torch.load(load_model_path,
|
| 133 |
+
# map_location=base_model.device)
|
| 134 |
+
# except:
|
| 135 |
+
# from safetensors.torch import load_file
|
| 136 |
+
# load_model_path = os.path.join(ea_model_path, "model.safetensors")
|
| 137 |
+
# if not os.path.exists(load_model_path):
|
| 138 |
+
# load_model_path = hf_hub_download(ea_model_path, "model.safetensors")
|
| 139 |
+
# ea_layer_state_dict = load_file(load_model_path)
|
| 140 |
+
# <before-after-mod> -------------------------------------------------
|
| 141 |
+
# ### <rewrite> new loading logic to support subfolder on hf api
|
| 142 |
+
try:
|
| 143 |
+
configpath = os.path.join(ea_model_path, "config.json")
|
| 144 |
+
load_model_path = os.path.join(ea_model_path, "pytorch_model.bin")
|
| 145 |
+
if not os.path.exists(configpath):
|
| 146 |
+
configpath = hf_hub_download(ea_model_path, "config.json")
|
| 147 |
+
if not os.path.exists(load_model_path):
|
| 148 |
+
load_model_path = hf_hub_download(ea_model_path, "pytorch_model.bin")
|
| 149 |
+
except:
|
| 150 |
+
folder_names = ea_model_path.split("/")
|
| 151 |
+
repo = "/".join(folder_names[:-1])
|
| 152 |
+
subfolder = folder_names[-1]
|
| 153 |
+
configpath = hf_hub_download(repo_id = repo, subfolder = subfolder, filename = "config.json")
|
| 154 |
+
load_model_path = hf_hub_download(repo_id = repo, subfolder = subfolder, filename = "pytorch_model.bin")
|
| 155 |
+
|
| 156 |
+
ea_layer_state_dict = torch.load(load_model_path, map_location=base_model.device)
|
| 157 |
+
# </mod>
|
| 158 |
+
|
| 159 |
+
model = cls(
|
| 160 |
+
use_eagle3,
|
| 161 |
+
base_model,
|
| 162 |
+
base_model_path,
|
| 163 |
+
configpath,
|
| 164 |
+
total_token,
|
| 165 |
+
depth,
|
| 166 |
+
top_k,
|
| 167 |
+
threshold,
|
| 168 |
+
ea_layer_state_dict
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
if total_token == -1:
|
| 172 |
+
device = model.base_model.model.layers[0].self_attn.q_proj.weight.device
|
| 173 |
+
cans = [40, 48, 50, 56, 60]
|
| 174 |
+
x = [1, 1.05, 1.07, 1.1, 1.13]
|
| 175 |
+
times = []
|
| 176 |
+
|
| 177 |
+
for i in range(len(cans)):
|
| 178 |
+
length = cans[i]
|
| 179 |
+
input_ids = torch.randint(0, model.config.vocab_size - 200, (1, length)).to(device)
|
| 180 |
+
torch.cuda.synchronize()
|
| 181 |
+
start_time = time.time()
|
| 182 |
+
for _ in range(20):
|
| 183 |
+
torch.cuda.synchronize()
|
| 184 |
+
with torch.no_grad():
|
| 185 |
+
outputs = model.base_model(input_ids)
|
| 186 |
+
torch.cuda.synchronize()
|
| 187 |
+
torch.cuda.synchronize()
|
| 188 |
+
end_time = time.time()
|
| 189 |
+
times.append((end_time - start_time) / x[i])
|
| 190 |
+
total_token = cans[times.index(min(times))]
|
| 191 |
+
model.ea_layer.total_tokens = total_token - 1
|
| 192 |
+
|
| 193 |
+
return model
|
| 194 |
+
|
| 195 |
+
def forward(
|
| 196 |
+
self,
|
| 197 |
+
input_ids=None,
|
| 198 |
+
attention_mask=None,
|
| 199 |
+
past_key_values=None,
|
| 200 |
+
output_orig=False,
|
| 201 |
+
position_ids=None,
|
| 202 |
+
):
|
| 203 |
+
|
| 204 |
+
with torch.inference_mode():
|
| 205 |
+
# Pass input through the base model
|
| 206 |
+
outputs = self.base_model.model(
|
| 207 |
+
input_ids=input_ids,
|
| 208 |
+
attention_mask=attention_mask,
|
| 209 |
+
past_key_values=past_key_values,
|
| 210 |
+
position_ids=position_ids,
|
| 211 |
+
)
|
| 212 |
+
if output_orig:
|
| 213 |
+
orig = self.base_model.lm_head(outputs[0])
|
| 214 |
+
hidden_states = outputs[0]
|
| 215 |
+
|
| 216 |
+
if output_orig:
|
| 217 |
+
return outputs, orig, hidden_states
|
| 218 |
+
else:
|
| 219 |
+
return outputs, hidden_states
|
| 220 |
+
|
| 221 |
+
@torch.no_grad()
|
| 222 |
+
def eagenerate(
|
| 223 |
+
self,
|
| 224 |
+
input_ids,
|
| 225 |
+
temperature=0.0,
|
| 226 |
+
top_p=0.0,
|
| 227 |
+
top_k=0.0,
|
| 228 |
+
max_new_tokens=512,
|
| 229 |
+
max_length=2048,
|
| 230 |
+
log=False,
|
| 231 |
+
is_llama3=False,
|
| 232 |
+
|
| 233 |
+
):
|
| 234 |
+
if is_llama3:
|
| 235 |
+
stop_token_id = self.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
if temperature > 1e-5:
|
| 239 |
+
logits_processor = prepare_logits_processor(temperature=temperature, top_p=top_p, top_k=top_k)
|
| 240 |
+
else:
|
| 241 |
+
logits_processor = None
|
| 242 |
+
# assert input_ids.shape[0] == 1, "Only support batch size 1 for now!!"
|
| 243 |
+
# Avoid modifying the input_ids in-place
|
| 244 |
+
|
| 245 |
+
padding = (torch.zeros(1, 1, dtype=torch.long) - 1).to(input_ids.device)
|
| 246 |
+
input_ids = input_ids.clone()
|
| 247 |
+
self.ea_layer.reset_kv()
|
| 248 |
+
|
| 249 |
+
# Initialize the past key and value states
|
| 250 |
+
if hasattr(self, "past_key_values"):
|
| 251 |
+
past_key_values = self.past_key_values
|
| 252 |
+
past_key_values_data = self.past_key_values_data
|
| 253 |
+
current_length_data = self.current_length_data
|
| 254 |
+
# Reset the past key and value states
|
| 255 |
+
current_length_data.zero_()
|
| 256 |
+
else:
|
| 257 |
+
(
|
| 258 |
+
past_key_values,
|
| 259 |
+
past_key_values_data,
|
| 260 |
+
current_length_data,
|
| 261 |
+
) = initialize_past_key_values(self.base_model,max_length=max_length)
|
| 262 |
+
self.past_key_values = past_key_values
|
| 263 |
+
self.past_key_values_data = past_key_values_data
|
| 264 |
+
self.current_length_data = current_length_data
|
| 265 |
+
|
| 266 |
+
input_len = input_ids.shape[1]
|
| 267 |
+
reset_tree_mode(self)
|
| 268 |
+
# prefill
|
| 269 |
+
draft_tokens, retrieve_indices, tree_mask, tree_position_ids, logits, hidden_state, sample_token = initialize_tree(
|
| 270 |
+
input_ids, self, past_key_values, logits_processor
|
| 271 |
+
)
|
| 272 |
+
new_token = 0
|
| 273 |
+
max_length = max_length - self.ea_layer.total_tokens - 10
|
| 274 |
+
for idx in range(max_length):
|
| 275 |
+
# with Timer("all"):
|
| 276 |
+
self.base_model.model.tree_mask = tree_mask
|
| 277 |
+
|
| 278 |
+
draft_tokens = draft_tokens.to(input_ids.device)
|
| 279 |
+
# Target model forward, get logits
|
| 280 |
+
logits, hidden_state_new, outputs = tree_decoding(
|
| 281 |
+
self,
|
| 282 |
+
draft_tokens,
|
| 283 |
+
past_key_values,
|
| 284 |
+
tree_position_ids,
|
| 285 |
+
input_ids,
|
| 286 |
+
retrieve_indices,
|
| 287 |
+
)
|
| 288 |
+
# retrieve_indices=tree_buffers["retrieve_indices"]
|
| 289 |
+
# logits = logits[0, retrieve_indices]
|
| 290 |
+
draft_tokens = torch.cat((draft_tokens, padding), dim=1)
|
| 291 |
+
candidates = draft_tokens[0, retrieve_indices]
|
| 292 |
+
# verification
|
| 293 |
+
best_candidate, accept_length, sample_p = evaluate_posterior(
|
| 294 |
+
logits, candidates, logits_processor
|
| 295 |
+
)
|
| 296 |
+
# print(accept_length)
|
| 297 |
+
# Adjusting the input sequence, draft model forward
|
| 298 |
+
input_ids, draft_tokens, retrieve_indices, tree_mask, tree_position_ids, new_token, hidden_state, sample_token = update_inference_inputs(
|
| 299 |
+
input_ids,
|
| 300 |
+
candidates,
|
| 301 |
+
best_candidate,
|
| 302 |
+
accept_length,
|
| 303 |
+
retrieve_indices,
|
| 304 |
+
logits_processor,
|
| 305 |
+
new_token,
|
| 306 |
+
past_key_values_data,
|
| 307 |
+
current_length_data,
|
| 308 |
+
self,
|
| 309 |
+
hidden_state_new,
|
| 310 |
+
sample_p
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
if is_llama3:
|
| 314 |
+
if stop_token_id in input_ids[0, input_len:].tolist():
|
| 315 |
+
break
|
| 316 |
+
|
| 317 |
+
if self.tokenizer.eos_token_id in input_ids[0, input_len:].tolist():
|
| 318 |
+
break
|
| 319 |
+
if new_token > max_new_tokens:
|
| 320 |
+
break
|
| 321 |
+
if input_ids.shape[1] > max_length:
|
| 322 |
+
break
|
| 323 |
+
if not log:
|
| 324 |
+
return input_ids
|
| 325 |
+
else:
|
| 326 |
+
return input_ids, new_token, idx
|
| 327 |
+
|
| 328 |
+
@torch.no_grad()
|
| 329 |
+
def naivegenerate(
|
| 330 |
+
self,
|
| 331 |
+
input_ids,
|
| 332 |
+
temperature=0.0,
|
| 333 |
+
top_p=0.0,
|
| 334 |
+
top_k=0.0,
|
| 335 |
+
max_new_tokens=512,
|
| 336 |
+
max_length=2048,
|
| 337 |
+
log=False,
|
| 338 |
+
is_llama3=False,
|
| 339 |
+
|
| 340 |
+
):
|
| 341 |
+
if is_llama3:
|
| 342 |
+
stop_token_id = self.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
if temperature > 1e-5:
|
| 346 |
+
logits_processor = prepare_logits_processor(temperature=temperature, top_p=top_p, top_k=top_k)
|
| 347 |
+
else:
|
| 348 |
+
logits_processor = None
|
| 349 |
+
# assert input_ids.shape[0] == 1, "Only support batch size 1 for now!!"
|
| 350 |
+
# Avoid modifying the input_ids in-place
|
| 351 |
+
|
| 352 |
+
padding = (torch.zeros(1, 1, dtype=torch.long) - 1).to(input_ids.device)
|
| 353 |
+
input_ids = input_ids.clone()
|
| 354 |
+
self.ea_layer.reset_kv()
|
| 355 |
+
|
| 356 |
+
# Initialize the past key and value states
|
| 357 |
+
if hasattr(self, "past_key_values"):
|
| 358 |
+
past_key_values = self.past_key_values
|
| 359 |
+
past_key_values_data = self.past_key_values_data
|
| 360 |
+
current_length_data = self.current_length_data
|
| 361 |
+
# Reset the past key and value states
|
| 362 |
+
current_length_data.zero_()
|
| 363 |
+
else:
|
| 364 |
+
(
|
| 365 |
+
past_key_values,
|
| 366 |
+
past_key_values_data,
|
| 367 |
+
current_length_data,
|
| 368 |
+
) = initialize_past_key_values(self.base_model,max_length=max_length)
|
| 369 |
+
self.past_key_values = past_key_values
|
| 370 |
+
self.past_key_values_data = past_key_values_data
|
| 371 |
+
self.current_length_data = current_length_data
|
| 372 |
+
|
| 373 |
+
input_len = input_ids.shape[1]
|
| 374 |
+
reset_tree_mode(self)
|
| 375 |
+
outputs = self.base_model(input_ids, past_key_values=past_key_values, use_cache=True)
|
| 376 |
+
new_token = 0
|
| 377 |
+
max_length = max_length - self.ea_layer.total_tokens - 10
|
| 378 |
+
for idx in range(max_length):
|
| 379 |
+
if logits_processor is not None:
|
| 380 |
+
logits = outputs.logits[:, -1]
|
| 381 |
+
logits = logits_processor(None, logits)
|
| 382 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
| 383 |
+
input_id = torch.multinomial(probabilities, 1)
|
| 384 |
+
else:
|
| 385 |
+
input_id = outputs.logits[:, -1:].argmax(dim=-1)
|
| 386 |
+
outputs = self.base_model(input_id, use_cache=True, past_key_values=past_key_values)
|
| 387 |
+
input_ids = torch.cat([input_ids, input_id], dim=-1)
|
| 388 |
+
new_token += 1
|
| 389 |
+
|
| 390 |
+
if is_llama3:
|
| 391 |
+
if stop_token_id in input_ids[0, input_len:].tolist():
|
| 392 |
+
break
|
| 393 |
+
|
| 394 |
+
if self.tokenizer.eos_token_id in input_ids[0, input_len:].tolist():
|
| 395 |
+
break
|
| 396 |
+
if new_token > max_new_tokens:
|
| 397 |
+
break
|
| 398 |
+
if input_ids.shape[1] > max_length:
|
| 399 |
+
break
|
| 400 |
+
if not log:
|
| 401 |
+
return input_ids
|
| 402 |
+
else:
|
| 403 |
+
return input_ids, new_token, idx
|
| 404 |
+
|
| 405 |
+
@torch.no_grad()
|
| 406 |
+
def ea_generate(
|
| 407 |
+
self,
|
| 408 |
+
input_ids,
|
| 409 |
+
temperature=0.0,
|
| 410 |
+
top_p=0.0,
|
| 411 |
+
top_k=0.0,
|
| 412 |
+
max_new_tokens=512,
|
| 413 |
+
max_length=2048,
|
| 414 |
+
log=False,
|
| 415 |
+
is_llama3=False,
|
| 416 |
+
|
| 417 |
+
):
|
| 418 |
+
if is_llama3:
|
| 419 |
+
stop_token_id = self.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
if temperature > 1e-5:
|
| 423 |
+
logits_processor = prepare_logits_processor(temperature=temperature, top_p=top_p, top_k=top_k)
|
| 424 |
+
else:
|
| 425 |
+
logits_processor = None
|
| 426 |
+
# assert input_ids.shape[0] == 1, "Only support batch size 1 for now!!"
|
| 427 |
+
# Avoid modifying the input_ids in-place
|
| 428 |
+
|
| 429 |
+
padding = (torch.zeros(1, 1, dtype=torch.long) - 1).to(input_ids.device)
|
| 430 |
+
input_ids = input_ids.clone()
|
| 431 |
+
self.ea_layer.reset_kv()
|
| 432 |
+
|
| 433 |
+
# Initialize the past key and value states
|
| 434 |
+
if hasattr(self, "past_key_values"):
|
| 435 |
+
past_key_values = self.past_key_values
|
| 436 |
+
past_key_values_data = self.past_key_values_data
|
| 437 |
+
current_length_data = self.current_length_data
|
| 438 |
+
# Reset the past key and value states
|
| 439 |
+
current_length_data.zero_()
|
| 440 |
+
else:
|
| 441 |
+
(
|
| 442 |
+
past_key_values,
|
| 443 |
+
past_key_values_data,
|
| 444 |
+
current_length_data,
|
| 445 |
+
) = initialize_past_key_values(self.base_model,max_length=max_length)
|
| 446 |
+
self.past_key_values = past_key_values
|
| 447 |
+
self.past_key_values_data = past_key_values_data
|
| 448 |
+
self.current_length_data = current_length_data
|
| 449 |
+
|
| 450 |
+
input_len = input_ids.shape[1]
|
| 451 |
+
reset_tree_mode(self)
|
| 452 |
+
draft_tokens, retrieve_indices, tree_mask, tree_position_ids, logits, hidden_state, sample_token = initialize_tree(
|
| 453 |
+
input_ids, self, past_key_values, logits_processor
|
| 454 |
+
)
|
| 455 |
+
new_token = 0
|
| 456 |
+
max_length = max_length - self.ea_layer.total_tokens - 10
|
| 457 |
+
for idx in range(max_length):
|
| 458 |
+
# with Timer("all"):
|
| 459 |
+
self.base_model.model.tree_mask = tree_mask
|
| 460 |
+
|
| 461 |
+
draft_tokens = draft_tokens.to(input_ids.device)
|
| 462 |
+
# with Timer("tree_decoding"):
|
| 463 |
+
logits, hidden_state_new, outputs = tree_decoding(
|
| 464 |
+
self,
|
| 465 |
+
draft_tokens,
|
| 466 |
+
past_key_values,
|
| 467 |
+
tree_position_ids,
|
| 468 |
+
input_ids,
|
| 469 |
+
retrieve_indices,
|
| 470 |
+
)
|
| 471 |
+
# retrieve_indices=tree_buffers["retrieve_indices"]
|
| 472 |
+
# logits = logits[0, retrieve_indices]
|
| 473 |
+
draft_tokens = torch.cat((draft_tokens, padding), dim=1)
|
| 474 |
+
candidates = draft_tokens[0, retrieve_indices]
|
| 475 |
+
best_candidate, accept_length, sample_p = evaluate_posterior(
|
| 476 |
+
logits, candidates, logits_processor
|
| 477 |
+
)
|
| 478 |
+
# print(accept_length)
|
| 479 |
+
# with Timer("update_inference_inputs"):
|
| 480 |
+
input_ids, draft_tokens, retrieve_indices, tree_mask, tree_position_ids, new_token, hidden_state, sample_token = update_inference_inputs(
|
| 481 |
+
input_ids,
|
| 482 |
+
candidates,
|
| 483 |
+
best_candidate,
|
| 484 |
+
accept_length,
|
| 485 |
+
retrieve_indices,
|
| 486 |
+
logits_processor,
|
| 487 |
+
new_token,
|
| 488 |
+
past_key_values_data,
|
| 489 |
+
current_length_data,
|
| 490 |
+
self,
|
| 491 |
+
hidden_state_new,
|
| 492 |
+
sample_p
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
yield input_ids
|
| 496 |
+
|
| 497 |
+
if is_llama3:
|
| 498 |
+
if stop_token_id in input_ids[0, input_len:].tolist():
|
| 499 |
+
break
|
| 500 |
+
|
| 501 |
+
if self.tokenizer.eos_token_id in input_ids[0, input_len:].tolist():
|
| 502 |
+
break
|
| 503 |
+
if new_token > max_new_tokens:
|
| 504 |
+
break
|
| 505 |
+
if input_ids.shape[1] > max_length:
|
| 506 |
+
break
|
| 507 |
+
|
| 508 |
+
@torch.no_grad()
|
| 509 |
+
def naive_generate(
|
| 510 |
+
self,
|
| 511 |
+
input_ids,
|
| 512 |
+
temperature=0.0,
|
| 513 |
+
top_p=0.0,
|
| 514 |
+
top_k=0.0,
|
| 515 |
+
max_new_tokens=512,
|
| 516 |
+
max_length=2048,
|
| 517 |
+
log=False,
|
| 518 |
+
is_llama3=False,
|
| 519 |
+
|
| 520 |
+
):
|
| 521 |
+
if is_llama3:
|
| 522 |
+
stop_token_id = self.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 523 |
+
|
| 524 |
+
|
| 525 |
+
if temperature > 1e-5:
|
| 526 |
+
logits_processor = prepare_logits_processor(temperature=temperature, top_p=top_p, top_k=top_k)
|
| 527 |
+
else:
|
| 528 |
+
logits_processor = None
|
| 529 |
+
# assert input_ids.shape[0] == 1, "Only support batch size 1 for now!!"
|
| 530 |
+
# Avoid modifying the input_ids in-place
|
| 531 |
+
|
| 532 |
+
padding = (torch.zeros(1, 1, dtype=torch.long) - 1).to(input_ids.device)
|
| 533 |
+
input_ids = input_ids.clone()
|
| 534 |
+
self.ea_layer.reset_kv()
|
| 535 |
+
|
| 536 |
+
# Initialize the past key and value states
|
| 537 |
+
if hasattr(self, "past_key_values"):
|
| 538 |
+
past_key_values = self.past_key_values
|
| 539 |
+
past_key_values_data = self.past_key_values_data
|
| 540 |
+
current_length_data = self.current_length_data
|
| 541 |
+
# Reset the past key and value states
|
| 542 |
+
current_length_data.zero_()
|
| 543 |
+
else:
|
| 544 |
+
(
|
| 545 |
+
past_key_values,
|
| 546 |
+
past_key_values_data,
|
| 547 |
+
current_length_data,
|
| 548 |
+
) = initialize_past_key_values(self.base_model,max_length=max_length)
|
| 549 |
+
self.past_key_values = past_key_values
|
| 550 |
+
self.past_key_values_data = past_key_values_data
|
| 551 |
+
self.current_length_data = current_length_data
|
| 552 |
+
|
| 553 |
+
input_len = input_ids.shape[1]
|
| 554 |
+
reset_tree_mode(self)
|
| 555 |
+
outputs = self.base_model(input_ids, past_key_values=past_key_values, use_cache=True)
|
| 556 |
+
new_token = 0
|
| 557 |
+
max_length = max_length - self.ea_layer.total_tokens - 10
|
| 558 |
+
for idx in range(max_length):
|
| 559 |
+
if logits_processor is not None:
|
| 560 |
+
logits = outputs.logits[:, -1]
|
| 561 |
+
logits = logits_processor(None, logits)
|
| 562 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
| 563 |
+
input_id = torch.multinomial(probabilities, 1)
|
| 564 |
+
else:
|
| 565 |
+
input_id = outputs.logits[:, -1:].argmax(dim=-1)
|
| 566 |
+
|
| 567 |
+
outputs = self.base_model(input_id, use_cache=True, past_key_values=past_key_values)
|
| 568 |
+
input_ids = torch.cat([input_ids, input_id], dim=-1)
|
| 569 |
+
new_token += 1
|
| 570 |
+
|
| 571 |
+
yield input_ids
|
| 572 |
+
|
| 573 |
+
if is_llama3:
|
| 574 |
+
if stop_token_id in input_ids[0, input_len:].tolist():
|
| 575 |
+
break
|
| 576 |
+
|
| 577 |
+
if self.tokenizer.eos_token_id in input_ids[0, input_len:].tolist():
|
| 578 |
+
break
|
| 579 |
+
if new_token > max_new_tokens:
|
| 580 |
+
break
|
| 581 |
+
if input_ids.shape[1] > max_length:
|
| 582 |
+
break
|
eagle/model/kv_cache.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class KVCache:
|
| 5 |
+
"""
|
| 6 |
+
A key-value cache for the model.
|
| 7 |
+
|
| 8 |
+
This class provides a mechanism to maintain a growing cache of keys and values,
|
| 9 |
+
particularly useful for models that benefit from caching previous states,
|
| 10 |
+
like transformers during autoregressive decoding.
|
| 11 |
+
|
| 12 |
+
Attributes:
|
| 13 |
+
data (torch.Tensor): The tensor storing keys and values.
|
| 14 |
+
current_length (int): Current length of the data being stored.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
def __init__(self, data, current_length):
|
| 18 |
+
"""
|
| 19 |
+
Initialize the KVCache.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
data (torch.Tensor): Initial tensor to store the keys and values.
|
| 23 |
+
current_length (int): Initial length of the data.
|
| 24 |
+
"""
|
| 25 |
+
self.data = data
|
| 26 |
+
self.current_length = current_length
|
| 27 |
+
|
| 28 |
+
@property
|
| 29 |
+
def shape(self):
|
| 30 |
+
"""Return the shape of the data tensor with updated length."""
|
| 31 |
+
return (
|
| 32 |
+
self.data.shape[0],
|
| 33 |
+
self.data.shape[1],
|
| 34 |
+
self.current_length.item(),
|
| 35 |
+
self.data.shape[3],
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
def copy(self, indices: torch.Tensor, prev_length: int, dim: int = 2):
|
| 39 |
+
"""
|
| 40 |
+
Copy values from the current data at specified indices to a new location.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
indices (torch.Tensor): Indices of the data tensor to be copied.
|
| 44 |
+
prev_length (int): Previous length before adding new data.
|
| 45 |
+
dim (int, optional): Dimension along which copying should be performed. Default is 2.
|
| 46 |
+
"""
|
| 47 |
+
tgt = self.data.index_select(dim, indices)
|
| 48 |
+
dst = self.data.narrow(dim, prev_length, tgt.shape[dim])
|
| 49 |
+
dst.copy_(tgt, non_blocking=True)
|
| 50 |
+
self.current_length.fill_(prev_length + tgt.shape[dim])
|
| 51 |
+
|
| 52 |
+
def cat(self, tensor: torch.Tensor, dim: int = 2):
|
| 53 |
+
"""
|
| 54 |
+
Concatenate the given tensor with the current data.
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
tensor (torch.Tensor): The tensor to be concatenated.
|
| 58 |
+
dim (int, optional): The dimension along which concatenation should be done. Default is 2.
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
torch.Tensor: The data tensor after concatenation up to the current length.
|
| 62 |
+
"""
|
| 63 |
+
dst = self.data.narrow(dim, self.current_length, tensor.shape[dim])
|
| 64 |
+
dst.copy_(tensor)
|
| 65 |
+
self.current_length.add_(tensor.shape[dim])
|
| 66 |
+
return torch.narrow(self.data, 2, 0, self.current_length)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def initialize_past_key_values(model,max_length=2200):
|
| 70 |
+
"""
|
| 71 |
+
Initialize past key and value states for a given transformer model.
|
| 72 |
+
|
| 73 |
+
This function prepares key-value cache structures for the model, allowing it to store and reuse
|
| 74 |
+
past key and value states during autoregressive decoding, which can improve efficiency.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
model (nn.Module): The transformer model for which past key-value states need to be initialized.
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
tuple:
|
| 81 |
+
- past_key_values (list): A list of KVCache objects for each layer in the model.
|
| 82 |
+
- past_key_values_data (torch.Tensor): The tensor that will store all keys and values.
|
| 83 |
+
- current_length_data (torch.Tensor): A tensor tracking the current length of keys/values in the cache.
|
| 84 |
+
"""
|
| 85 |
+
# Extracting configuration from the model
|
| 86 |
+
config = model.config
|
| 87 |
+
# Initializing the batch size to 1, this can be modified if different batch sizes are required
|
| 88 |
+
batch_size = 1
|
| 89 |
+
# Initializing a tensor to store past keys and values for all layers
|
| 90 |
+
|
| 91 |
+
devices=[]
|
| 92 |
+
for i in range(config.num_hidden_layers):
|
| 93 |
+
try:
|
| 94 |
+
device = model.model.layers[i].self_attn.q_proj.weight.device
|
| 95 |
+
except:
|
| 96 |
+
device=model.layers[i].self_attn.q_proj.weight.device
|
| 97 |
+
devices.append(device)
|
| 98 |
+
past_key_values_data_list=[]
|
| 99 |
+
startnum=0
|
| 100 |
+
startdevice=devices[0]
|
| 101 |
+
for id,i in enumerate(devices):
|
| 102 |
+
if startdevice!=i:
|
| 103 |
+
past_key_values_data = torch.zeros(
|
| 104 |
+
startnum * 2,
|
| 105 |
+
batch_size,
|
| 106 |
+
config.num_key_value_heads,
|
| 107 |
+
max_length,
|
| 108 |
+
config.hidden_size // config.num_attention_heads,
|
| 109 |
+
device=startdevice,
|
| 110 |
+
dtype=model.dtype,
|
| 111 |
+
)
|
| 112 |
+
past_key_values_data_list.append(past_key_values_data)
|
| 113 |
+
startdevice = i
|
| 114 |
+
startnum=0
|
| 115 |
+
startnum += 1
|
| 116 |
+
past_key_values_data = torch.zeros(
|
| 117 |
+
startnum * 2,
|
| 118 |
+
batch_size,
|
| 119 |
+
config.num_key_value_heads,
|
| 120 |
+
max_length,
|
| 121 |
+
config.hidden_size // config.num_attention_heads,
|
| 122 |
+
device=startdevice,
|
| 123 |
+
dtype=model.dtype,
|
| 124 |
+
)
|
| 125 |
+
past_key_values_data_list.append(past_key_values_data)
|
| 126 |
+
# Initialize tensor to store the current length of the cached data for all layers.
|
| 127 |
+
# [IMPORTANT] It needs to be kept on CPU for quick access and updates.
|
| 128 |
+
current_length_data = torch.zeros(
|
| 129 |
+
config.num_hidden_layers * 2, dtype=torch.long, device="cpu"
|
| 130 |
+
)
|
| 131 |
+
# Creating a KVCache for each pair of key and value in all layers
|
| 132 |
+
past_key_values = [] * config.num_hidden_layers
|
| 133 |
+
|
| 134 |
+
bias=0
|
| 135 |
+
start_data_m=devices[0].index
|
| 136 |
+
for i in range(config.num_hidden_layers):
|
| 137 |
+
data_m=devices[i].index
|
| 138 |
+
if data_m!=start_data_m:
|
| 139 |
+
bias=0
|
| 140 |
+
start_data_m=data_m
|
| 141 |
+
try:
|
| 142 |
+
past_key_values.append(
|
| 143 |
+
[
|
| 144 |
+
KVCache(past_key_values_data_list[data_m-devices[0].index][2*bias + j], current_length_data[i * 2 + j])
|
| 145 |
+
for j in range(2)
|
| 146 |
+
]
|
| 147 |
+
)
|
| 148 |
+
except:
|
| 149 |
+
past_key_values.append(
|
| 150 |
+
[
|
| 151 |
+
KVCache(past_key_values_data_list[0][2 * bias + j],
|
| 152 |
+
current_length_data[i * 2 + j])
|
| 153 |
+
for j in range(2)
|
| 154 |
+
]
|
| 155 |
+
)
|
| 156 |
+
bias+=1
|
| 157 |
+
return past_key_values, past_key_values_data_list, current_length_data
|
eagle/model/modeling_llama_kv.py
ADDED
|
@@ -0,0 +1,1597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Source: https://github.com/huggingface/transformers/blob/v4.31-release/src/transformers/models/llama/modeling_llama.py
|
| 2 |
+
# Modifications are denoted by the symbol: [MODIFIED]
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
""" PyTorch LLaMA model."""
|
| 6 |
+
import math
|
| 7 |
+
from typing import List, Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from torch import nn
|
| 13 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 14 |
+
|
| 15 |
+
# [MODIFIED] Import from transformer library
|
| 16 |
+
from transformers.activations import ACT2FN
|
| 17 |
+
from transformers.modeling_outputs import (
|
| 18 |
+
BaseModelOutputWithPast,
|
| 19 |
+
CausalLMOutputWithPast,
|
| 20 |
+
SequenceClassifierOutputWithPast,
|
| 21 |
+
)
|
| 22 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 23 |
+
from transformers.utils import (
|
| 24 |
+
add_start_docstrings,
|
| 25 |
+
add_start_docstrings_to_model_forward,
|
| 26 |
+
logging,
|
| 27 |
+
replace_return_docstrings,
|
| 28 |
+
)
|
| 29 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 30 |
+
from transformers import LlamaConfig
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__)
|
| 33 |
+
|
| 34 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 38 |
+
def _make_causal_mask(
|
| 39 |
+
input_ids_shape: torch.Size,
|
| 40 |
+
dtype: torch.dtype,
|
| 41 |
+
device: torch.device,
|
| 42 |
+
past_key_values_length: int = 0,
|
| 43 |
+
):
|
| 44 |
+
"""
|
| 45 |
+
Create a causal mask for bi-directional self-attention.
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
input_ids_shape (torch.Size): The shape of input_ids tensor, typically (batch_size, tgt_len).
|
| 49 |
+
dtype (torch.dtype): The data type of the mask.
|
| 50 |
+
device (torch.device): The device on which the mask will be placed.
|
| 51 |
+
past_key_values_length (int, optional): The length of past key values. Default is 0.
|
| 52 |
+
|
| 53 |
+
Returns:
|
| 54 |
+
torch.Tensor: The causal mask tensor.
|
| 55 |
+
"""
|
| 56 |
+
bsz, tgt_len = input_ids_shape
|
| 57 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
| 58 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 59 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 60 |
+
mask = mask.to(dtype)
|
| 61 |
+
|
| 62 |
+
if past_key_values_length > 0:
|
| 63 |
+
mask = torch.cat(
|
| 64 |
+
[
|
| 65 |
+
torch.zeros(
|
| 66 |
+
tgt_len, past_key_values_length, dtype=dtype, device=device
|
| 67 |
+
),
|
| 68 |
+
mask,
|
| 69 |
+
],
|
| 70 |
+
dim=-1,
|
| 71 |
+
)
|
| 72 |
+
return mask[None, None, :, :].expand(
|
| 73 |
+
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 78 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 79 |
+
"""
|
| 80 |
+
Expand attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
mask (torch.Tensor): The attention mask tensor of shape `[bsz, seq_len]`.
|
| 84 |
+
dtype (torch.dtype): The data type of the mask.
|
| 85 |
+
tgt_len (Optional[int], optional): The target sequence length. If None, it defaults to the source sequence length.
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
torch.Tensor: The expanded mask tensor.
|
| 89 |
+
"""
|
| 90 |
+
bsz, src_len = mask.size()
|
| 91 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 92 |
+
|
| 93 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 94 |
+
|
| 95 |
+
inverted_mask = 1.0 - expanded_mask
|
| 96 |
+
|
| 97 |
+
return inverted_mask.masked_fill(
|
| 98 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class LlamaRMSNorm(nn.Module):
|
| 105 |
+
"""
|
| 106 |
+
LlamaRMSNorm is equivalent to T5LayerNorm.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
hidden_size (int): The size of the hidden states.
|
| 110 |
+
eps (float, optional): A small value to prevent division by zero. Default is 1e-6.
|
| 111 |
+
"""
|
| 112 |
+
|
| 113 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 114 |
+
super().__init__()
|
| 115 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 116 |
+
self.variance_epsilon = eps
|
| 117 |
+
|
| 118 |
+
def forward(self, hidden_states):
|
| 119 |
+
"""
|
| 120 |
+
Apply LlamaRMSNorm to the input hidden states.
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
hidden_states (torch.Tensor): Input hidden states.
|
| 124 |
+
|
| 125 |
+
Returns:
|
| 126 |
+
torch.Tensor: The normalized and scaled hidden states.
|
| 127 |
+
"""
|
| 128 |
+
input_dtype = hidden_states.dtype
|
| 129 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 130 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 131 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 132 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class LlamaRotaryEmbedding(nn.Module):
|
| 136 |
+
"""
|
| 137 |
+
Llama Rotary Positional Embedding Module.
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
dim (int): The dimension of the embedding.
|
| 141 |
+
max_position_embeddings (int, optional): The maximum position for embeddings. Default is 2048.
|
| 142 |
+
base (int, optional): The base value for rotational encoding. Default is 10000.
|
| 143 |
+
device (str, optional): The device on which the computation will be performed. Default is None.
|
| 144 |
+
"""
|
| 145 |
+
|
| 146 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 147 |
+
super().__init__()
|
| 148 |
+
|
| 149 |
+
self.dim = dim
|
| 150 |
+
self.max_position_embeddings = max_position_embeddings
|
| 151 |
+
self.base = base
|
| 152 |
+
inv_freq = 1.0 / (
|
| 153 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
| 154 |
+
)
|
| 155 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 156 |
+
|
| 157 |
+
# Build here to make `torch.jit.trace` work.
|
| 158 |
+
self._set_cos_sin_cache(
|
| 159 |
+
seq_len=max_position_embeddings,
|
| 160 |
+
device=self.inv_freq.device,
|
| 161 |
+
dtype=torch.get_default_dtype(),
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 165 |
+
"""
|
| 166 |
+
Set the cosine and sine cache for positional embeddings.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
seq_len (int): The sequence length.
|
| 170 |
+
device (str): The device on which the cache tensors will be stored.
|
| 171 |
+
dtype: The data type of the cache tensors.
|
| 172 |
+
"""
|
| 173 |
+
self.max_seq_len_cached = seq_len
|
| 174 |
+
t = torch.arange(
|
| 175 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 179 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 180 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 181 |
+
self.register_buffer(
|
| 182 |
+
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
|
| 183 |
+
)
|
| 184 |
+
self.register_buffer(
|
| 185 |
+
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
def forward(self, x, seq_len=None):
|
| 189 |
+
"""
|
| 190 |
+
Forward pass of the LlamaRotaryEmbedding module.
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
x (torch.Tensor): Input tensor of shape [bs, num_attention_heads, seq_len, head_size].
|
| 194 |
+
seq_len (int): The sequence length. If greater than the cached length, the cache will be updated.
|
| 195 |
+
|
| 196 |
+
Returns:
|
| 197 |
+
tuple: A tuple containing two tensors, the cosine and sine embeddings, both of shape [1, 1, seq_len, dim].
|
| 198 |
+
"""
|
| 199 |
+
if seq_len > self.max_seq_len_cached:
|
| 200 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 201 |
+
|
| 202 |
+
return (
|
| 203 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 204 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
class LlamaRotaryEmbedding_L31(nn.Module):
|
| 209 |
+
def __init__(
|
| 210 |
+
self,
|
| 211 |
+
dim=None,
|
| 212 |
+
max_position_embeddings=2048,
|
| 213 |
+
base=10000,
|
| 214 |
+
device=None,
|
| 215 |
+
scaling_factor=1.0,
|
| 216 |
+
rope_type="default",
|
| 217 |
+
config: Optional[LlamaConfig] = None,
|
| 218 |
+
):
|
| 219 |
+
super().__init__()
|
| 220 |
+
# TODO (joao): remove the `if` below, only used for BC
|
| 221 |
+
self.rope_kwargs = {}
|
| 222 |
+
if config is None:
|
| 223 |
+
logger.warning_once(
|
| 224 |
+
"`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
| 225 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
| 226 |
+
)
|
| 227 |
+
self.rope_kwargs = {
|
| 228 |
+
"rope_type": rope_type,
|
| 229 |
+
"factor": scaling_factor,
|
| 230 |
+
"dim": dim,
|
| 231 |
+
"base": base,
|
| 232 |
+
"max_position_embeddings": max_position_embeddings,
|
| 233 |
+
}
|
| 234 |
+
self.rope_type = rope_type
|
| 235 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 236 |
+
self.original_max_seq_len = max_position_embeddings
|
| 237 |
+
else:
|
| 238 |
+
# BC: "rope_type" was originally "type"
|
| 239 |
+
if config.rope_scaling is not None:
|
| 240 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 241 |
+
else:
|
| 242 |
+
self.rope_type = "default"
|
| 243 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 244 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 245 |
+
|
| 246 |
+
self.config = config
|
| 247 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 248 |
+
|
| 249 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
| 250 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 251 |
+
self.original_inv_freq = self.inv_freq
|
| 252 |
+
|
| 253 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
| 254 |
+
"""
|
| 255 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 256 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
| 257 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 258 |
+
"""
|
| 259 |
+
seq_len = torch.max(position_ids) + 1
|
| 260 |
+
if seq_len > self.max_seq_len_cached: # growth
|
| 261 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
| 262 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
| 263 |
+
)
|
| 264 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
| 265 |
+
self.max_seq_len_cached = seq_len
|
| 266 |
+
|
| 267 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
| 268 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 269 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
| 270 |
+
|
| 271 |
+
@torch.no_grad()
|
| 272 |
+
def forward(self, x, position_ids):
|
| 273 |
+
if "dynamic" in self.rope_type:
|
| 274 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
| 275 |
+
|
| 276 |
+
# Core RoPE block
|
| 277 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 278 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 279 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 280 |
+
device_type = x.device.type
|
| 281 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 282 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 283 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 284 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 285 |
+
cos = emb.cos()
|
| 286 |
+
sin = emb.sin()
|
| 287 |
+
|
| 288 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 289 |
+
cos = cos * self.attention_scaling
|
| 290 |
+
sin = sin * self.attention_scaling
|
| 291 |
+
|
| 292 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 293 |
+
|
| 294 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
| 295 |
+
"""
|
| 296 |
+
LlamaRotaryEmbedding extended with linear scaling.
|
| 297 |
+
|
| 298 |
+
This class adds linear scaling to LlamaRotaryEmbedding. Credits to the Reddit user /u/kaiokendev.
|
| 299 |
+
|
| 300 |
+
Args:
|
| 301 |
+
dim (int): The dimension of the embedding.
|
| 302 |
+
max_position_embeddings (int, optional): The maximum number of position embeddings. Default is 2048.
|
| 303 |
+
base (int, optional): The base value for the rotational embeddings. Default is 10000.
|
| 304 |
+
device (str or torch.device, optional): The device where the embeddings should be stored. Default is None.
|
| 305 |
+
scaling_factor (float, optional): The scaling factor for the embeddings. Default is 1.0.
|
| 306 |
+
"""
|
| 307 |
+
|
| 308 |
+
def __init__(
|
| 309 |
+
self,
|
| 310 |
+
dim,
|
| 311 |
+
max_position_embeddings=2048,
|
| 312 |
+
base=10000,
|
| 313 |
+
device=None,
|
| 314 |
+
scaling_factor=1.0,
|
| 315 |
+
):
|
| 316 |
+
self.scaling_factor = scaling_factor
|
| 317 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 318 |
+
|
| 319 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 320 |
+
"""
|
| 321 |
+
Set the cosine and sine cache for the rotary embeddings.
|
| 322 |
+
|
| 323 |
+
Args:
|
| 324 |
+
seq_len (int): The sequence length.
|
| 325 |
+
device (str or torch.device): The device where the cache should be stored.
|
| 326 |
+
dtype: The data type for the cache.
|
| 327 |
+
"""
|
| 328 |
+
self.max_seq_len_cached = seq_len
|
| 329 |
+
t = torch.arange(
|
| 330 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
| 331 |
+
)
|
| 332 |
+
t = t / self.scaling_factor
|
| 333 |
+
|
| 334 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 335 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 336 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 337 |
+
self.register_buffer(
|
| 338 |
+
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
|
| 339 |
+
)
|
| 340 |
+
self.register_buffer(
|
| 341 |
+
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
| 346 |
+
"""
|
| 347 |
+
LlamaRotaryEmbedding extended with Dynamic NTK scaling.
|
| 348 |
+
|
| 349 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
| 350 |
+
"""
|
| 351 |
+
|
| 352 |
+
def __init__(
|
| 353 |
+
self,
|
| 354 |
+
dim,
|
| 355 |
+
max_position_embeddings=2048,
|
| 356 |
+
base=10000,
|
| 357 |
+
device=None,
|
| 358 |
+
scaling_factor=1.0,
|
| 359 |
+
):
|
| 360 |
+
"""
|
| 361 |
+
Initialize the LlamaDynamicNTKScalingRotaryEmbedding.
|
| 362 |
+
|
| 363 |
+
Args:
|
| 364 |
+
dim (int): The dimensionality of the embedding.
|
| 365 |
+
max_position_embeddings (int, optional): Maximum number of position embeddings. Default is 2048.
|
| 366 |
+
base (int, optional): Base value for scaling calculations. Default is 10000.
|
| 367 |
+
device: The device to place tensors on. If None, uses the default device.
|
| 368 |
+
scaling_factor (float, optional): Scaling factor for NTK scaling. Default is 1.0.
|
| 369 |
+
"""
|
| 370 |
+
self.scaling_factor = scaling_factor
|
| 371 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 372 |
+
|
| 373 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 374 |
+
"""
|
| 375 |
+
Set the cached values for cosine and sine.
|
| 376 |
+
|
| 377 |
+
Args:
|
| 378 |
+
seq_len (int): The sequence length.
|
| 379 |
+
device: The device to place tensors on.
|
| 380 |
+
dtype: The data type of tensors.
|
| 381 |
+
"""
|
| 382 |
+
self.max_seq_len_cached = seq_len
|
| 383 |
+
|
| 384 |
+
if seq_len > self.max_position_embeddings:
|
| 385 |
+
base = self.base * (
|
| 386 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
| 387 |
+
- (self.scaling_factor - 1)
|
| 388 |
+
) ** (self.dim / (self.dim - 2))
|
| 389 |
+
inv_freq = 1.0 / (
|
| 390 |
+
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
| 391 |
+
)
|
| 392 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 393 |
+
|
| 394 |
+
t = torch.arange(
|
| 395 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 399 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 400 |
+
self.register_buffer(
|
| 401 |
+
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
|
| 402 |
+
)
|
| 403 |
+
self.register_buffer(
|
| 404 |
+
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
def rotate_half(x):
|
| 409 |
+
"""
|
| 410 |
+
Rotates half the hidden dimensions of the input.
|
| 411 |
+
|
| 412 |
+
Args:
|
| 413 |
+
x (torch.Tensor): Input tensor.
|
| 414 |
+
|
| 415 |
+
Returns:
|
| 416 |
+
torch.Tensor: Tensor with half of its hidden dimensions rotated.
|
| 417 |
+
"""
|
| 418 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 419 |
+
x2 = x[..., x.shape[-1] // 2:]
|
| 420 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
| 424 |
+
"""
|
| 425 |
+
Apply rotary position embeddings to query and key tensors.
|
| 426 |
+
|
| 427 |
+
Args:
|
| 428 |
+
q (torch.Tensor): Query tensor.
|
| 429 |
+
k (torch.Tensor): Key tensor.
|
| 430 |
+
cos (torch.Tensor): Cosine values.
|
| 431 |
+
sin (torch.Tensor): Sine values.
|
| 432 |
+
position_ids (torch.Tensor): Position IDs.
|
| 433 |
+
|
| 434 |
+
Returns:
|
| 435 |
+
torch.Tensor: Query and key tensors with rotary position embeddings applied.
|
| 436 |
+
"""
|
| 437 |
+
cos = cos.squeeze(1).squeeze(0)
|
| 438 |
+
sin = sin.squeeze(1).squeeze(0)
|
| 439 |
+
cos = cos[position_ids].unsqueeze(1)
|
| 440 |
+
sin = sin[position_ids].unsqueeze(1)
|
| 441 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 442 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 443 |
+
return q_embed, k_embed
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
def apply_rotary_pos_emb_L31(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 447 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 448 |
+
|
| 449 |
+
Args:
|
| 450 |
+
q (`torch.Tensor`): The query tensor.
|
| 451 |
+
k (`torch.Tensor`): The key tensor.
|
| 452 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 453 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 454 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 455 |
+
Deprecated and unused.
|
| 456 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 457 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 458 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 459 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 460 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 461 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 462 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 463 |
+
Returns:
|
| 464 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 465 |
+
"""
|
| 466 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 467 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 468 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 469 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 470 |
+
return q_embed, k_embed
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
class LlamaMLP(nn.Module):
|
| 474 |
+
"""
|
| 475 |
+
LlamaMLP is a multi-layer perceptron module used in the Llama model.
|
| 476 |
+
|
| 477 |
+
Args:
|
| 478 |
+
config: The configuration for the MLP.
|
| 479 |
+
|
| 480 |
+
Attributes:
|
| 481 |
+
pretraining_tp (int): The pretraining time periods.
|
| 482 |
+
hidden_size (int): The size of the hidden layer.
|
| 483 |
+
intermediate_size (int): The size of the intermediate layer.
|
| 484 |
+
gate_proj (nn.Linear): The linear projection for gating.
|
| 485 |
+
up_proj (nn.Linear): The linear projection for the up projection.
|
| 486 |
+
down_proj (nn.Linear): The linear projection for the down projection.
|
| 487 |
+
act_fn: The activation function.
|
| 488 |
+
|
| 489 |
+
"""
|
| 490 |
+
|
| 491 |
+
def __init__(self, config):
|
| 492 |
+
super().__init__()
|
| 493 |
+
self.pretraining_tp = config.pretraining_tp
|
| 494 |
+
self.hidden_size = config.hidden_size
|
| 495 |
+
self.intermediate_size = config.intermediate_size
|
| 496 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 497 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 498 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 499 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 500 |
+
|
| 501 |
+
def forward(self, x):
|
| 502 |
+
"""
|
| 503 |
+
Forward pass of the MLP.
|
| 504 |
+
|
| 505 |
+
Args:
|
| 506 |
+
x: Input tensor.
|
| 507 |
+
|
| 508 |
+
Returns:
|
| 509 |
+
torch.Tensor: Output tensor.
|
| 510 |
+
"""
|
| 511 |
+
if self.pretraining_tp > 1:
|
| 512 |
+
slice = self.intermediate_size // self.pretraining_tp
|
| 513 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
| 514 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
| 515 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
| 516 |
+
|
| 517 |
+
gate_proj = torch.cat(
|
| 518 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)],
|
| 519 |
+
dim=-1,
|
| 520 |
+
)
|
| 521 |
+
up_proj = torch.cat(
|
| 522 |
+
[F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)],
|
| 523 |
+
dim=-1,
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
| 527 |
+
down_proj = [
|
| 528 |
+
F.linear(intermediate_states[i], down_proj_slices[i])
|
| 529 |
+
for i in range(self.pretraining_tp)
|
| 530 |
+
]
|
| 531 |
+
down_proj = sum(down_proj)
|
| 532 |
+
else:
|
| 533 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 534 |
+
|
| 535 |
+
return down_proj
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 539 |
+
"""
|
| 540 |
+
Repeat key and value tensors n times along the specified dimension.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
hidden_states (torch.Tensor): Input tensor with shape (batch, num_key_value_heads, seqlen, head_dim).
|
| 544 |
+
n_rep (int): Number of times to repeat.
|
| 545 |
+
|
| 546 |
+
Returns:
|
| 547 |
+
torch.Tensor: Repeated tensor with shape (batch, num_key_value_heads * n_rep, seqlen, head_dim).
|
| 548 |
+
"""
|
| 549 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 550 |
+
if n_rep == 1:
|
| 551 |
+
return hidden_states
|
| 552 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
| 553 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
| 554 |
+
)
|
| 555 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
class HackMiniCPMLongRoPE(LlamaRotaryEmbedding):
|
| 559 |
+
"""https://huggingface.co/openbmb/MiniCPM4.1-8B/blob/main/modeling_minicpm.py"""
|
| 560 |
+
"""Extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
| 561 |
+
|
| 562 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, short_factor=None, long_factor=None, original_max_position_embeddings=None):
|
| 563 |
+
self.short_factor = short_factor
|
| 564 |
+
self.long_factor = long_factor
|
| 565 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
| 566 |
+
scale = (max_position_embeddings / self.original_max_position_embeddings)
|
| 567 |
+
self.scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
|
| 568 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 569 |
+
|
| 570 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 571 |
+
self.max_seq_len_cached = seq_len
|
| 572 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 573 |
+
if seq_len > self.original_max_position_embeddings:
|
| 574 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=device)
|
| 575 |
+
else:
|
| 576 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=device)
|
| 577 |
+
|
| 578 |
+
freqs = torch.mul(
|
| 579 |
+
torch.outer(t, 1.0 / ext_factors).to(device=device),
|
| 580 |
+
self.inv_freq.to(device=device).to(dtype)
|
| 581 |
+
)
|
| 582 |
+
# # Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 583 |
+
# emb = torch.cat((freqs, freqs), dim=-1)
|
| 584 |
+
# self.register_buffer('cos_cached', emb.cos().to(dtype) * self.scaling_factor, persistent=False)
|
| 585 |
+
# self.register_buffer('sin_cached', emb.sin().to(dtype) * self.scaling_factor, persistent=False)
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
# t = t / ext_factors
|
| 589 |
+
# # t = t / self.scaling_factor
|
| 590 |
+
|
| 591 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 592 |
+
# # Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 593 |
+
|
| 594 |
+
# 250911
|
| 595 |
+
# [DIFF] shape
|
| 596 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 597 |
+
self.register_buffer(
|
| 598 |
+
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
|
| 599 |
+
)
|
| 600 |
+
self.register_buffer(
|
| 601 |
+
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
# # 250914 prev modification forgot to add scaling factor
|
| 605 |
+
# # [DIFF] shape
|
| 606 |
+
# emb = torch.cat((freqs, freqs), dim=-1)
|
| 607 |
+
# self.register_buffer(
|
| 608 |
+
# "cos_cached", emb.cos()[None, None, :, :].to(dtype) * self.scaling_factor, persistent=False
|
| 609 |
+
# )
|
| 610 |
+
# self.register_buffer(
|
| 611 |
+
# "sin_cached", emb.sin()[None, None, :, :].to(dtype) * self.scaling_factor, persistent=False
|
| 612 |
+
# )
|
| 613 |
+
|
| 614 |
+
class LlamaAttention(nn.Module):
|
| 615 |
+
"""
|
| 616 |
+
LlamaAttention is a multi-headed attention module based on the 'Attention Is All You Need' paper.
|
| 617 |
+
|
| 618 |
+
Args:
|
| 619 |
+
config (LlamaConfig): Configuration for the attention module.
|
| 620 |
+
|
| 621 |
+
Attributes:
|
| 622 |
+
config (LlamaConfig): Configuration for the attention module.
|
| 623 |
+
hidden_size (int): The size of the hidden layer.
|
| 624 |
+
num_heads (int): The number of attention heads.
|
| 625 |
+
head_dim (int): The dimension of each attention head.
|
| 626 |
+
num_key_value_heads (int): The number of key-value attention heads.
|
| 627 |
+
num_key_value_groups (int): The number of key-value groups.
|
| 628 |
+
pretraining_tp (int): The pretraining time periods.
|
| 629 |
+
max_position_embeddings (int): The maximum position embeddings.
|
| 630 |
+
|
| 631 |
+
"""
|
| 632 |
+
|
| 633 |
+
def __init__(self, config: LlamaConfig):
|
| 634 |
+
super().__init__()
|
| 635 |
+
self.config = config
|
| 636 |
+
self.hidden_size = config.hidden_size
|
| 637 |
+
self.num_heads = config.num_attention_heads
|
| 638 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 639 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 640 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 641 |
+
self.pretraining_tp = config.pretraining_tp
|
| 642 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 643 |
+
|
| 644 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 645 |
+
raise ValueError(
|
| 646 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 647 |
+
f" and `num_heads`: {self.num_heads})."
|
| 648 |
+
)
|
| 649 |
+
self.q_proj = nn.Linear(
|
| 650 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
| 651 |
+
)
|
| 652 |
+
self.k_proj = nn.Linear(
|
| 653 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
| 654 |
+
)
|
| 655 |
+
self.v_proj = nn.Linear(
|
| 656 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
| 657 |
+
)
|
| 658 |
+
self.o_proj = nn.Linear(
|
| 659 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
| 660 |
+
)
|
| 661 |
+
self._init_rope()
|
| 662 |
+
|
| 663 |
+
def _init_rope(self):
|
| 664 |
+
if self.config.rope_scaling is None:
|
| 665 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
| 666 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.config.rope_theta
|
| 667 |
+
)
|
| 668 |
+
else:
|
| 669 |
+
|
| 670 |
+
# add: Support MiniCPM4.1-8B | JQZ 250910
|
| 671 |
+
try:
|
| 672 |
+
assert "rope_type" in self.config.rope_scaling.keys()
|
| 673 |
+
assert self.config.rope_scaling["rope_type"] == "longrope"
|
| 674 |
+
scaling_type = "longrope"
|
| 675 |
+
except:
|
| 676 |
+
scaling_type = self.config.rope_scaling["type"]
|
| 677 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
| 678 |
+
# /add
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
# scaling_type == "longrope": # add: Support MiniCPM4.1-8B | JQZ 250910
|
| 682 |
+
self.rotary_emb = HackMiniCPMLongRoPE(
|
| 683 |
+
self.head_dim,
|
| 684 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 685 |
+
short_factor=self.config.rope_scaling["short_factor"],
|
| 686 |
+
long_factor=self.config.rope_scaling["long_factor"],
|
| 687 |
+
original_max_position_embeddings=self.config.rope_scaling["original_max_position_embeddings"],
|
| 688 |
+
)
|
| 689 |
+
|
| 690 |
+
# try:
|
| 691 |
+
# scaling_type = self.config.rope_scaling["type"]
|
| 692 |
+
# scaling_factor = self.config.rope_scaling["factor"]
|
| 693 |
+
# if scaling_type == "linear":
|
| 694 |
+
# self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
| 695 |
+
# self.head_dim,
|
| 696 |
+
# max_position_embeddings=self.max_position_embeddings,
|
| 697 |
+
# scaling_factor=scaling_factor,
|
| 698 |
+
# base=self.config.rope_theta,
|
| 699 |
+
# )
|
| 700 |
+
# elif scaling_type == "dynamic":
|
| 701 |
+
# self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
| 702 |
+
# self.head_dim,
|
| 703 |
+
# max_position_embeddings=self.max_position_embeddings,
|
| 704 |
+
# scaling_factor=scaling_factor,
|
| 705 |
+
# base=self.config.rope_theta,
|
| 706 |
+
# )
|
| 707 |
+
# else:
|
| 708 |
+
# raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
| 709 |
+
# except:
|
| 710 |
+
# # print("For LLaMA 31")
|
| 711 |
+
# self.rotary_emb = LlamaRotaryEmbedding_L31(config=self.config)
|
| 712 |
+
|
| 713 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 714 |
+
return (
|
| 715 |
+
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
| 716 |
+
.transpose(1, 2)
|
| 717 |
+
.contiguous()
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
def forward(
|
| 721 |
+
self,
|
| 722 |
+
hidden_states: torch.Tensor,
|
| 723 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 724 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 725 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 726 |
+
output_attentions: bool = False,
|
| 727 |
+
use_cache: bool = False,
|
| 728 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 729 |
+
bsz, q_len, _ = hidden_states.size()
|
| 730 |
+
|
| 731 |
+
if self.pretraining_tp > 1:
|
| 732 |
+
key_value_slicing = (
|
| 733 |
+
self.num_key_value_heads * self.head_dim
|
| 734 |
+
) // self.pretraining_tp
|
| 735 |
+
query_slices = self.q_proj.weight.split(
|
| 736 |
+
(self.num_heads * self.head_dim) // self.pretraining_tp, dim=0
|
| 737 |
+
)
|
| 738 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
| 739 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
| 740 |
+
|
| 741 |
+
query_states = [
|
| 742 |
+
F.linear(hidden_states, query_slices[i])
|
| 743 |
+
for i in range(self.pretraining_tp)
|
| 744 |
+
]
|
| 745 |
+
query_states = torch.cat(query_states, dim=-1)
|
| 746 |
+
|
| 747 |
+
key_states = [
|
| 748 |
+
F.linear(hidden_states, key_slices[i])
|
| 749 |
+
for i in range(self.pretraining_tp)
|
| 750 |
+
]
|
| 751 |
+
key_states = torch.cat(key_states, dim=-1)
|
| 752 |
+
|
| 753 |
+
value_states = [
|
| 754 |
+
F.linear(hidden_states, value_slices[i])
|
| 755 |
+
for i in range(self.pretraining_tp)
|
| 756 |
+
]
|
| 757 |
+
value_states = torch.cat(value_states, dim=-1)
|
| 758 |
+
|
| 759 |
+
else:
|
| 760 |
+
query_states = self.q_proj(hidden_states)
|
| 761 |
+
key_states = self.k_proj(hidden_states)
|
| 762 |
+
value_states = self.v_proj(hidden_states)
|
| 763 |
+
|
| 764 |
+
query_states = query_states.view(
|
| 765 |
+
bsz, q_len, self.num_heads, self.head_dim
|
| 766 |
+
).transpose(1, 2)
|
| 767 |
+
key_states = key_states.view(
|
| 768 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 769 |
+
).transpose(1, 2)
|
| 770 |
+
value_states = value_states.view(
|
| 771 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 772 |
+
).transpose(1, 2)
|
| 773 |
+
|
| 774 |
+
kv_seq_len = key_states.shape[-2]
|
| 775 |
+
if past_key_value is not None:
|
| 776 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 777 |
+
if isinstance(self.rotary_emb, LlamaRotaryEmbedding_L31):
|
| 778 |
+
cos, sin = self.rotary_emb(query_states,position_ids)
|
| 779 |
+
query_states, key_states = apply_rotary_pos_emb_L31(query_states, key_states, cos, sin)
|
| 780 |
+
else:
|
| 781 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 782 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 783 |
+
query_states, key_states, cos, sin, position_ids
|
| 784 |
+
)
|
| 785 |
+
|
| 786 |
+
# [MODIFIED] Using KVCache mechanism for preallocated GPU memory optimization
|
| 787 |
+
# past_key_value is utilized to leverage previously computed key and value states.
|
| 788 |
+
# If past_key_value is available, reuse the states for k, v, and self_attention.
|
| 789 |
+
if past_key_value is not None:
|
| 790 |
+
key_states = past_key_value[0].cat(key_states, dim=2)
|
| 791 |
+
value_states = past_key_value[1].cat(value_states, dim=2)
|
| 792 |
+
# Reset past_key_value to avoid return past_key_value.
|
| 793 |
+
past_key_value = None
|
| 794 |
+
|
| 795 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 796 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 797 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 798 |
+
|
| 799 |
+
attn_weights = torch.matmul(
|
| 800 |
+
query_states, key_states.transpose(2, 3)
|
| 801 |
+
) / math.sqrt(self.head_dim)
|
| 802 |
+
|
| 803 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 804 |
+
raise ValueError(
|
| 805 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 806 |
+
f" {attn_weights.size()}"
|
| 807 |
+
)
|
| 808 |
+
|
| 809 |
+
if attention_mask is not None:
|
| 810 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 811 |
+
raise ValueError(
|
| 812 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 813 |
+
)
|
| 814 |
+
attn_weights = attn_weights + attention_mask
|
| 815 |
+
|
| 816 |
+
# upcast attention to fp32
|
| 817 |
+
attn_weights = nn.functional.softmax(
|
| 818 |
+
attn_weights, dim=-1, dtype=torch.float32
|
| 819 |
+
).to(query_states.dtype)
|
| 820 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 821 |
+
|
| 822 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 823 |
+
raise ValueError(
|
| 824 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 825 |
+
f" {attn_output.size()}"
|
| 826 |
+
)
|
| 827 |
+
|
| 828 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 829 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 830 |
+
|
| 831 |
+
if self.pretraining_tp > 1:
|
| 832 |
+
attn_output = attn_output.split(
|
| 833 |
+
self.hidden_size // self.pretraining_tp, dim=2
|
| 834 |
+
)
|
| 835 |
+
o_proj_slices = self.o_proj.weight.split(
|
| 836 |
+
self.hidden_size // self.pretraining_tp, dim=1
|
| 837 |
+
)
|
| 838 |
+
attn_output = sum(
|
| 839 |
+
[
|
| 840 |
+
F.linear(attn_output[i], o_proj_slices[i])
|
| 841 |
+
for i in range(self.pretraining_tp)
|
| 842 |
+
]
|
| 843 |
+
)
|
| 844 |
+
else:
|
| 845 |
+
attn_output = self.o_proj(attn_output)
|
| 846 |
+
|
| 847 |
+
if not output_attentions:
|
| 848 |
+
attn_weights = None
|
| 849 |
+
|
| 850 |
+
return attn_output, attn_weights, past_key_value
|
| 851 |
+
|
| 852 |
+
|
| 853 |
+
class LlamaDecoderLayer(nn.Module):
|
| 854 |
+
"""
|
| 855 |
+
LlamaDecoderLayer represents a single layer of the Llama decoder.
|
| 856 |
+
|
| 857 |
+
Args:
|
| 858 |
+
config (LlamaConfig): Configuration for the decoder layer.
|
| 859 |
+
|
| 860 |
+
Attributes:
|
| 861 |
+
hidden_size (int): The size of the hidden layer.
|
| 862 |
+
self_attn (LlamaAttention): Multi-headed self-attention module.
|
| 863 |
+
mlp (LlamaMLP): Multi-layer perceptron module.
|
| 864 |
+
input_layernorm (LlamaRMSNorm): Layer normalization for input.
|
| 865 |
+
post_attention_layernorm (LlamaRMSNorm): Layer normalization after self-attention.
|
| 866 |
+
"""
|
| 867 |
+
|
| 868 |
+
def __init__(self, config: LlamaConfig):
|
| 869 |
+
super().__init__()
|
| 870 |
+
self.hidden_size = config.hidden_size
|
| 871 |
+
self.self_attn = LlamaAttention(config=config)
|
| 872 |
+
self.mlp = LlamaMLP(config)
|
| 873 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 874 |
+
self.post_attention_layernorm = LlamaRMSNorm(
|
| 875 |
+
config.hidden_size, eps=config.rms_norm_eps
|
| 876 |
+
)
|
| 877 |
+
|
| 878 |
+
def forward(
|
| 879 |
+
self,
|
| 880 |
+
hidden_states: torch.Tensor,
|
| 881 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 882 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 883 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 884 |
+
output_attentions: Optional[bool] = False,
|
| 885 |
+
use_cache: Optional[bool] = False,
|
| 886 |
+
) -> Tuple[
|
| 887 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
| 888 |
+
]:
|
| 889 |
+
"""
|
| 890 |
+
Forward pass for the LlamaDecoderLayer.
|
| 891 |
+
|
| 892 |
+
Args:
|
| 893 |
+
hidden_states (torch.FloatTensor): Input tensor of shape `(batch, seq_len, embed_dim)`.
|
| 894 |
+
attention_mask (torch.FloatTensor, optional): Attention mask of size
|
| 895 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 896 |
+
position_ids (torch.LongTensor, optional): Positional IDs tensor.
|
| 897 |
+
past_key_value (Tuple[torch.FloatTensor], optional): Cached past key and value projection states.
|
| 898 |
+
output_attentions (bool, optional): Whether or not to return the attentions tensors of all attention layers.
|
| 899 |
+
use_cache (bool, optional): If set to `True`, `past_key_values` key-value states are returned and can be
|
| 900 |
+
used to speed up decoding.
|
| 901 |
+
|
| 902 |
+
Returns:
|
| 903 |
+
Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: Tuple containing:
|
| 904 |
+
- hidden_states (torch.FloatTensor): Output tensor.
|
| 905 |
+
- self_attn_weights (Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]): Self-attention weights if
|
| 906 |
+
`output_attentions` is `True`.
|
| 907 |
+
- present_key_value (Optional[Tuple[torch.FloatTensor]]): Cached key and value projection states if
|
| 908 |
+
`use_cache` is `True`.
|
| 909 |
+
"""
|
| 910 |
+
|
| 911 |
+
residual = hidden_states
|
| 912 |
+
|
| 913 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 914 |
+
|
| 915 |
+
# Self Attention
|
| 916 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 917 |
+
hidden_states=hidden_states,
|
| 918 |
+
attention_mask=attention_mask,
|
| 919 |
+
position_ids=position_ids,
|
| 920 |
+
past_key_value=past_key_value,
|
| 921 |
+
output_attentions=output_attentions,
|
| 922 |
+
use_cache=use_cache,
|
| 923 |
+
)
|
| 924 |
+
hidden_states = residual + hidden_states
|
| 925 |
+
|
| 926 |
+
# Fully Connected
|
| 927 |
+
residual = hidden_states
|
| 928 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 929 |
+
hidden_states = self.mlp(hidden_states)
|
| 930 |
+
hidden_states = residual + hidden_states
|
| 931 |
+
|
| 932 |
+
outputs = (hidden_states,)
|
| 933 |
+
|
| 934 |
+
if output_attentions:
|
| 935 |
+
outputs += (self_attn_weights,)
|
| 936 |
+
|
| 937 |
+
if use_cache:
|
| 938 |
+
outputs += (present_key_value,)
|
| 939 |
+
|
| 940 |
+
return outputs
|
| 941 |
+
|
| 942 |
+
|
| 943 |
+
LLAMA_START_DOCSTRING = r"""
|
| 944 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 945 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 946 |
+
etc.)
|
| 947 |
+
|
| 948 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 949 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 950 |
+
and behavior.
|
| 951 |
+
|
| 952 |
+
Parameters:
|
| 953 |
+
config ([`LlamaConfig`]):
|
| 954 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 955 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 956 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 957 |
+
"""
|
| 958 |
+
|
| 959 |
+
|
| 960 |
+
@add_start_docstrings(
|
| 961 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 962 |
+
LLAMA_START_DOCSTRING,
|
| 963 |
+
)
|
| 964 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
| 965 |
+
config_class = LlamaConfig
|
| 966 |
+
base_model_prefix = "model"
|
| 967 |
+
supports_gradient_checkpointing = True
|
| 968 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
| 969 |
+
_skip_keys_device_placement = "past_key_values"
|
| 970 |
+
|
| 971 |
+
def _init_weights(self, module):
|
| 972 |
+
std = self.config.initializer_range
|
| 973 |
+
if isinstance(module, nn.Linear):
|
| 974 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 975 |
+
if module.bias is not None:
|
| 976 |
+
module.bias.data.zero_()
|
| 977 |
+
elif isinstance(module, nn.Embedding):
|
| 978 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 979 |
+
if module.padding_idx is not None:
|
| 980 |
+
module.weight.data[module.padding_idx].zero_()
|
| 981 |
+
|
| 982 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 983 |
+
if isinstance(module, LlamaModel):
|
| 984 |
+
module.gradient_checkpointing = value
|
| 985 |
+
|
| 986 |
+
|
| 987 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
| 988 |
+
Args:
|
| 989 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 990 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 991 |
+
it.
|
| 992 |
+
|
| 993 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 994 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 995 |
+
|
| 996 |
+
[What are input IDs?](../glossary#input-ids)
|
| 997 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 998 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 999 |
+
|
| 1000 |
+
- 1 for tokens that are **not masked**,
|
| 1001 |
+
- 0 for tokens that are **masked**.
|
| 1002 |
+
|
| 1003 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1004 |
+
|
| 1005 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1006 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1007 |
+
|
| 1008 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 1009 |
+
`past_key_values`).
|
| 1010 |
+
|
| 1011 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 1012 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 1013 |
+
information on the default strategy.
|
| 1014 |
+
|
| 1015 |
+
- 1 indicates the head is **not masked**,
|
| 1016 |
+
- 0 indicates the head is **masked**.
|
| 1017 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1018 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1019 |
+
config.n_positions - 1]`.
|
| 1020 |
+
|
| 1021 |
+
[What are position IDs?](../glossary#position-ids)
|
| 1022 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 1023 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 1024 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 1025 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
| 1026 |
+
|
| 1027 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 1028 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 1029 |
+
|
| 1030 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 1031 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 1032 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 1033 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1034 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1035 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1036 |
+
model's internal embedding lookup matrix.
|
| 1037 |
+
use_cache (`bool`, *optional*):
|
| 1038 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1039 |
+
`past_key_values`).
|
| 1040 |
+
output_attentions (`bool`, *optional*):
|
| 1041 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1042 |
+
tensors for more detail.
|
| 1043 |
+
output_hidden_states (`bool`, *optional*):
|
| 1044 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1045 |
+
more detail.
|
| 1046 |
+
return_dict (`bool`, *optional*):
|
| 1047 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1048 |
+
"""
|
| 1049 |
+
|
| 1050 |
+
|
| 1051 |
+
@add_start_docstrings(
|
| 1052 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 1053 |
+
LLAMA_START_DOCSTRING,
|
| 1054 |
+
)
|
| 1055 |
+
class LlamaModel(LlamaPreTrainedModel):
|
| 1056 |
+
"""
|
| 1057 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
| 1058 |
+
|
| 1059 |
+
Args:
|
| 1060 |
+
config: LlamaConfig
|
| 1061 |
+
"""
|
| 1062 |
+
|
| 1063 |
+
def __init__(self, config: LlamaConfig):
|
| 1064 |
+
super().__init__(config)
|
| 1065 |
+
self.padding_idx = config.pad_token_id
|
| 1066 |
+
self.vocab_size = config.vocab_size
|
| 1067 |
+
|
| 1068 |
+
self.embed_tokens = nn.Embedding(
|
| 1069 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
| 1070 |
+
)
|
| 1071 |
+
self.layers = nn.ModuleList(
|
| 1072 |
+
[LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]
|
| 1073 |
+
)
|
| 1074 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1075 |
+
|
| 1076 |
+
self.gradient_checkpointing = False
|
| 1077 |
+
# Initialize weights and apply final processing
|
| 1078 |
+
self.post_init()
|
| 1079 |
+
|
| 1080 |
+
def get_input_embeddings(self):
|
| 1081 |
+
return self.embed_tokens
|
| 1082 |
+
|
| 1083 |
+
def set_input_embeddings(self, value):
|
| 1084 |
+
self.embed_tokens = value
|
| 1085 |
+
|
| 1086 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
| 1087 |
+
def _prepare_decoder_attention_mask(
|
| 1088 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
| 1089 |
+
):
|
| 1090 |
+
# create causal mask
|
| 1091 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1092 |
+
combined_attention_mask = None
|
| 1093 |
+
if input_shape[-1] > 1:
|
| 1094 |
+
combined_attention_mask = _make_causal_mask(
|
| 1095 |
+
input_shape,
|
| 1096 |
+
# inputs_embeds.dtype,
|
| 1097 |
+
torch.float32, # [MODIFIED] force to cast to float32
|
| 1098 |
+
device=inputs_embeds.device,
|
| 1099 |
+
past_key_values_length=past_key_values_length,
|
| 1100 |
+
)
|
| 1101 |
+
|
| 1102 |
+
if attention_mask is not None:
|
| 1103 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1104 |
+
expanded_attn_mask = _expand_mask(
|
| 1105 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
| 1106 |
+
).to(inputs_embeds.device)
|
| 1107 |
+
combined_attention_mask = (
|
| 1108 |
+
expanded_attn_mask
|
| 1109 |
+
if combined_attention_mask is None
|
| 1110 |
+
else expanded_attn_mask + combined_attention_mask
|
| 1111 |
+
)
|
| 1112 |
+
|
| 1113 |
+
if hasattr(self, "tree_mask") and self.tree_mask is not None:
|
| 1114 |
+
tree_mask = self.tree_mask
|
| 1115 |
+
tree_len = tree_mask.size(-1)
|
| 1116 |
+
combined_attention_mask[:, :, -tree_len:, -tree_len:][
|
| 1117 |
+
tree_mask == 0
|
| 1118 |
+
] = combined_attention_mask.min()
|
| 1119 |
+
|
| 1120 |
+
return combined_attention_mask
|
| 1121 |
+
|
| 1122 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1123 |
+
def forward(
|
| 1124 |
+
self,
|
| 1125 |
+
input_ids: torch.LongTensor = None,
|
| 1126 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1127 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1128 |
+
past_key_values=None, # [MODIFIED] past_key_value is KVCache class
|
| 1129 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1130 |
+
use_cache: Optional[bool] = None,
|
| 1131 |
+
output_attentions: Optional[bool] = None,
|
| 1132 |
+
output_hidden_states: Optional[bool] = None,
|
| 1133 |
+
return_dict: Optional[bool] = None,
|
| 1134 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 1135 |
+
output_attentions = (
|
| 1136 |
+
output_attentions
|
| 1137 |
+
if output_attentions is not None
|
| 1138 |
+
else self.config.output_attentions
|
| 1139 |
+
)
|
| 1140 |
+
output_hidden_states = (
|
| 1141 |
+
output_hidden_states
|
| 1142 |
+
if output_hidden_states is not None
|
| 1143 |
+
else self.config.output_hidden_states
|
| 1144 |
+
)
|
| 1145 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1146 |
+
|
| 1147 |
+
return_dict = (
|
| 1148 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1149 |
+
)
|
| 1150 |
+
|
| 1151 |
+
# retrieve input_ids and inputs_embeds
|
| 1152 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1153 |
+
raise ValueError(
|
| 1154 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
| 1155 |
+
)
|
| 1156 |
+
elif input_ids is not None:
|
| 1157 |
+
batch_size, seq_length = input_ids.shape
|
| 1158 |
+
elif inputs_embeds is not None:
|
| 1159 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 1160 |
+
else:
|
| 1161 |
+
raise ValueError(
|
| 1162 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
| 1163 |
+
)
|
| 1164 |
+
|
| 1165 |
+
seq_length_with_past = seq_length
|
| 1166 |
+
past_key_values_length = 0
|
| 1167 |
+
|
| 1168 |
+
if past_key_values is not None:
|
| 1169 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 1170 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 1171 |
+
|
| 1172 |
+
if position_ids is None:
|
| 1173 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1174 |
+
position_ids = torch.arange(
|
| 1175 |
+
past_key_values_length,
|
| 1176 |
+
seq_length + past_key_values_length,
|
| 1177 |
+
dtype=torch.long,
|
| 1178 |
+
device=device,
|
| 1179 |
+
)
|
| 1180 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 1181 |
+
else:
|
| 1182 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 1183 |
+
|
| 1184 |
+
if inputs_embeds is None:
|
| 1185 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 1186 |
+
# embed positions
|
| 1187 |
+
if attention_mask is None:
|
| 1188 |
+
attention_mask = torch.ones(
|
| 1189 |
+
(batch_size, seq_length_with_past),
|
| 1190 |
+
dtype=torch.bool,
|
| 1191 |
+
device=inputs_embeds.device,
|
| 1192 |
+
)
|
| 1193 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 1194 |
+
attention_mask,
|
| 1195 |
+
(batch_size, seq_length),
|
| 1196 |
+
inputs_embeds,
|
| 1197 |
+
past_key_values_length,
|
| 1198 |
+
)
|
| 1199 |
+
|
| 1200 |
+
hidden_states = inputs_embeds
|
| 1201 |
+
|
| 1202 |
+
if self.gradient_checkpointing and self.training:
|
| 1203 |
+
if use_cache:
|
| 1204 |
+
logger.warning_once(
|
| 1205 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 1206 |
+
)
|
| 1207 |
+
use_cache = False
|
| 1208 |
+
|
| 1209 |
+
# decoder layers
|
| 1210 |
+
all_hidden_states = () if 1 else None
|
| 1211 |
+
all_self_attns = () if output_attentions else None
|
| 1212 |
+
next_decoder_cache = () if use_cache else None
|
| 1213 |
+
|
| 1214 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1215 |
+
if idx==len(self.layers)-3 or idx==len(self.layers)//2 or idx==2:
|
| 1216 |
+
all_hidden_states += (hidden_states,)
|
| 1217 |
+
|
| 1218 |
+
past_key_value = (
|
| 1219 |
+
past_key_values[idx] if past_key_values is not None else None
|
| 1220 |
+
)
|
| 1221 |
+
|
| 1222 |
+
if self.gradient_checkpointing and self.training:
|
| 1223 |
+
|
| 1224 |
+
def create_custom_forward(module):
|
| 1225 |
+
def custom_forward(*inputs):
|
| 1226 |
+
# None for past_key_value
|
| 1227 |
+
return module(*inputs, output_attentions, None)
|
| 1228 |
+
|
| 1229 |
+
return custom_forward
|
| 1230 |
+
|
| 1231 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 1232 |
+
create_custom_forward(decoder_layer),
|
| 1233 |
+
hidden_states,
|
| 1234 |
+
attention_mask,
|
| 1235 |
+
position_ids,
|
| 1236 |
+
None,
|
| 1237 |
+
)
|
| 1238 |
+
else:
|
| 1239 |
+
layer_outputs = decoder_layer(
|
| 1240 |
+
hidden_states,
|
| 1241 |
+
attention_mask=attention_mask,
|
| 1242 |
+
position_ids=position_ids,
|
| 1243 |
+
past_key_value=past_key_value,
|
| 1244 |
+
output_attentions=output_attentions,
|
| 1245 |
+
use_cache=use_cache,
|
| 1246 |
+
)
|
| 1247 |
+
|
| 1248 |
+
hidden_states = layer_outputs[0]
|
| 1249 |
+
|
| 1250 |
+
if use_cache:
|
| 1251 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 1252 |
+
|
| 1253 |
+
if output_attentions:
|
| 1254 |
+
all_self_attns += (layer_outputs[1],)
|
| 1255 |
+
|
| 1256 |
+
hidden_states = self.norm(hidden_states)
|
| 1257 |
+
|
| 1258 |
+
# add hidden states from the last decoder layer
|
| 1259 |
+
if output_hidden_states:
|
| 1260 |
+
all_hidden_states += (hidden_states,)
|
| 1261 |
+
|
| 1262 |
+
# !!!
|
| 1263 |
+
# all_hidden_states += (hidden_states,)
|
| 1264 |
+
|
| 1265 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 1266 |
+
if not return_dict:
|
| 1267 |
+
return tuple(
|
| 1268 |
+
v
|
| 1269 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 1270 |
+
if v is not None
|
| 1271 |
+
)
|
| 1272 |
+
return BaseModelOutputWithPast(
|
| 1273 |
+
last_hidden_state=hidden_states,
|
| 1274 |
+
past_key_values=next_cache,
|
| 1275 |
+
hidden_states=all_hidden_states,
|
| 1276 |
+
attentions=all_self_attns,
|
| 1277 |
+
)
|
| 1278 |
+
|
| 1279 |
+
|
| 1280 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
| 1281 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1282 |
+
|
| 1283 |
+
def __init__(self, config):
|
| 1284 |
+
super().__init__(config)
|
| 1285 |
+
self.model = LlamaModel(config)
|
| 1286 |
+
self.pretraining_tp = config.pretraining_tp
|
| 1287 |
+
self.vocab_size = config.vocab_size
|
| 1288 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1289 |
+
|
| 1290 |
+
# Initialize weights and apply final processing
|
| 1291 |
+
self.post_init()
|
| 1292 |
+
|
| 1293 |
+
def get_input_embeddings(self):
|
| 1294 |
+
return self.model.embed_tokens
|
| 1295 |
+
|
| 1296 |
+
def set_input_embeddings(self, value):
|
| 1297 |
+
self.model.embed_tokens = value
|
| 1298 |
+
|
| 1299 |
+
def get_output_embeddings(self):
|
| 1300 |
+
return self.lm_head
|
| 1301 |
+
|
| 1302 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1303 |
+
self.lm_head = new_embeddings
|
| 1304 |
+
|
| 1305 |
+
def set_decoder(self, decoder):
|
| 1306 |
+
self.model = decoder
|
| 1307 |
+
|
| 1308 |
+
def get_decoder(self):
|
| 1309 |
+
return self.model
|
| 1310 |
+
|
| 1311 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1312 |
+
@replace_return_docstrings(
|
| 1313 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
| 1314 |
+
)
|
| 1315 |
+
def forward(
|
| 1316 |
+
self,
|
| 1317 |
+
input_ids: torch.LongTensor = None,
|
| 1318 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1319 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1320 |
+
past_key_values=None, # [MODIFIED] past_key_value is KVCache class
|
| 1321 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1322 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1323 |
+
use_cache: Optional[bool] = None,
|
| 1324 |
+
output_attentions: Optional[bool] = None,
|
| 1325 |
+
output_hidden_states: Optional[bool] = None,
|
| 1326 |
+
return_dict: Optional[bool] = None,
|
| 1327 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1328 |
+
r"""
|
| 1329 |
+
Args:
|
| 1330 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1331 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1332 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1333 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1334 |
+
|
| 1335 |
+
Returns:
|
| 1336 |
+
|
| 1337 |
+
Example:
|
| 1338 |
+
|
| 1339 |
+
```python
|
| 1340 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
| 1341 |
+
|
| 1342 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 1343 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 1344 |
+
|
| 1345 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1346 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1347 |
+
|
| 1348 |
+
>>> # Generate
|
| 1349 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1350 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1351 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1352 |
+
```"""
|
| 1353 |
+
|
| 1354 |
+
output_attentions = (
|
| 1355 |
+
output_attentions
|
| 1356 |
+
if output_attentions is not None
|
| 1357 |
+
else self.config.output_attentions
|
| 1358 |
+
)
|
| 1359 |
+
output_hidden_states = (
|
| 1360 |
+
output_hidden_states
|
| 1361 |
+
if output_hidden_states is not None
|
| 1362 |
+
else self.config.output_hidden_states
|
| 1363 |
+
)
|
| 1364 |
+
return_dict = (
|
| 1365 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1366 |
+
)
|
| 1367 |
+
|
| 1368 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1369 |
+
outputs = self.model(
|
| 1370 |
+
input_ids=input_ids,
|
| 1371 |
+
attention_mask=attention_mask,
|
| 1372 |
+
position_ids=position_ids,
|
| 1373 |
+
past_key_values=past_key_values,
|
| 1374 |
+
inputs_embeds=inputs_embeds,
|
| 1375 |
+
use_cache=use_cache,
|
| 1376 |
+
output_attentions=output_attentions,
|
| 1377 |
+
output_hidden_states=output_hidden_states,
|
| 1378 |
+
return_dict=return_dict,
|
| 1379 |
+
)
|
| 1380 |
+
|
| 1381 |
+
hidden_states = outputs[0]
|
| 1382 |
+
if self.pretraining_tp > 1:
|
| 1383 |
+
lm_head_slices = self.lm_head.weight.split(
|
| 1384 |
+
self.vocab_size // self.pretraining_tp, dim=0
|
| 1385 |
+
)
|
| 1386 |
+
logits = [
|
| 1387 |
+
F.linear(hidden_states, lm_head_slices[i])
|
| 1388 |
+
for i in range(self.pretraining_tp)
|
| 1389 |
+
]
|
| 1390 |
+
logits = torch.cat(logits, dim=-1)
|
| 1391 |
+
else:
|
| 1392 |
+
logits = self.lm_head(hidden_states)
|
| 1393 |
+
logits = logits.float()
|
| 1394 |
+
|
| 1395 |
+
loss = None
|
| 1396 |
+
if labels is not None:
|
| 1397 |
+
# Shift so that tokens < n predict n
|
| 1398 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1399 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1400 |
+
# Flatten the tokens
|
| 1401 |
+
loss_fct = CrossEntropyLoss()
|
| 1402 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1403 |
+
shift_labels = shift_labels.view(-1)
|
| 1404 |
+
# Enable model parallelism
|
| 1405 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1406 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1407 |
+
|
| 1408 |
+
if not return_dict:
|
| 1409 |
+
output = (logits,) + outputs[1:]
|
| 1410 |
+
return (loss,) + output if loss is not None else output
|
| 1411 |
+
|
| 1412 |
+
return CausalLMOutputWithPast(
|
| 1413 |
+
loss=loss,
|
| 1414 |
+
logits=logits,
|
| 1415 |
+
past_key_values=outputs.past_key_values,
|
| 1416 |
+
hidden_states=outputs.hidden_states,
|
| 1417 |
+
attentions=outputs.attentions,
|
| 1418 |
+
)
|
| 1419 |
+
|
| 1420 |
+
def prepare_inputs_for_generation(
|
| 1421 |
+
self,
|
| 1422 |
+
input_ids,
|
| 1423 |
+
past_key_values=None,
|
| 1424 |
+
attention_mask=None,
|
| 1425 |
+
inputs_embeds=None,
|
| 1426 |
+
**kwargs,
|
| 1427 |
+
):
|
| 1428 |
+
if past_key_values:
|
| 1429 |
+
input_ids = input_ids[:, -1:]
|
| 1430 |
+
|
| 1431 |
+
position_ids = kwargs.get("position_ids", None)
|
| 1432 |
+
if attention_mask is not None and position_ids is None:
|
| 1433 |
+
# create position_ids on the fly for batch generation
|
| 1434 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1435 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1436 |
+
if past_key_values:
|
| 1437 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 1438 |
+
|
| 1439 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1440 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1441 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1442 |
+
else:
|
| 1443 |
+
model_inputs = {"input_ids": input_ids}
|
| 1444 |
+
|
| 1445 |
+
model_inputs.update(
|
| 1446 |
+
{
|
| 1447 |
+
"position_ids": position_ids,
|
| 1448 |
+
"past_key_values": past_key_values,
|
| 1449 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1450 |
+
"attention_mask": attention_mask,
|
| 1451 |
+
}
|
| 1452 |
+
)
|
| 1453 |
+
return model_inputs
|
| 1454 |
+
|
| 1455 |
+
@staticmethod
|
| 1456 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1457 |
+
reordered_past = ()
|
| 1458 |
+
for layer_past in past_key_values:
|
| 1459 |
+
reordered_past += (
|
| 1460 |
+
tuple(
|
| 1461 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 1462 |
+
for past_state in layer_past
|
| 1463 |
+
),
|
| 1464 |
+
)
|
| 1465 |
+
return reordered_past
|
| 1466 |
+
|
| 1467 |
+
|
| 1468 |
+
@add_start_docstrings(
|
| 1469 |
+
"""
|
| 1470 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
| 1471 |
+
|
| 1472 |
+
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1473 |
+
(e.g. GPT-2) do.
|
| 1474 |
+
|
| 1475 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1476 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1477 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1478 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1479 |
+
each row of the batch).
|
| 1480 |
+
""",
|
| 1481 |
+
LLAMA_START_DOCSTRING,
|
| 1482 |
+
)
|
| 1483 |
+
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
| 1484 |
+
def __init__(self, config):
|
| 1485 |
+
super().__init__(config)
|
| 1486 |
+
self.num_labels = config.num_labels
|
| 1487 |
+
self.model = LlamaModel(config)
|
| 1488 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1489 |
+
|
| 1490 |
+
# Initialize weights and apply final processing
|
| 1491 |
+
self.post_init()
|
| 1492 |
+
|
| 1493 |
+
def get_input_embeddings(self):
|
| 1494 |
+
return self.model.embed_tokens
|
| 1495 |
+
|
| 1496 |
+
def set_input_embeddings(self, value):
|
| 1497 |
+
self.model.embed_tokens = value
|
| 1498 |
+
|
| 1499 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1500 |
+
def forward(
|
| 1501 |
+
self,
|
| 1502 |
+
input_ids: torch.LongTensor = None,
|
| 1503 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1504 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1505 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1506 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1507 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1508 |
+
use_cache: Optional[bool] = None,
|
| 1509 |
+
output_attentions: Optional[bool] = None,
|
| 1510 |
+
output_hidden_states: Optional[bool] = None,
|
| 1511 |
+
return_dict: Optional[bool] = None,
|
| 1512 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1513 |
+
r"""
|
| 1514 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1515 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1516 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1517 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1518 |
+
"""
|
| 1519 |
+
return_dict = (
|
| 1520 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1521 |
+
)
|
| 1522 |
+
|
| 1523 |
+
transformer_outputs = self.model(
|
| 1524 |
+
input_ids,
|
| 1525 |
+
attention_mask=attention_mask,
|
| 1526 |
+
position_ids=position_ids,
|
| 1527 |
+
past_key_values=past_key_values,
|
| 1528 |
+
inputs_embeds=inputs_embeds,
|
| 1529 |
+
use_cache=use_cache,
|
| 1530 |
+
output_attentions=output_attentions,
|
| 1531 |
+
output_hidden_states=output_hidden_states,
|
| 1532 |
+
return_dict=return_dict,
|
| 1533 |
+
)
|
| 1534 |
+
hidden_states = transformer_outputs[0]
|
| 1535 |
+
logits = self.score(hidden_states)
|
| 1536 |
+
|
| 1537 |
+
if input_ids is not None:
|
| 1538 |
+
batch_size = input_ids.shape[0]
|
| 1539 |
+
else:
|
| 1540 |
+
batch_size = inputs_embeds.shape[0]
|
| 1541 |
+
|
| 1542 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1543 |
+
raise ValueError(
|
| 1544 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1545 |
+
)
|
| 1546 |
+
if self.config.pad_token_id is None:
|
| 1547 |
+
sequence_lengths = -1
|
| 1548 |
+
else:
|
| 1549 |
+
if input_ids is not None:
|
| 1550 |
+
sequence_lengths = (
|
| 1551 |
+
torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
| 1552 |
+
).to(logits.device)
|
| 1553 |
+
else:
|
| 1554 |
+
sequence_lengths = -1
|
| 1555 |
+
|
| 1556 |
+
pooled_logits = logits[
|
| 1557 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
| 1558 |
+
]
|
| 1559 |
+
|
| 1560 |
+
loss = None
|
| 1561 |
+
if labels is not None:
|
| 1562 |
+
labels = labels.to(logits.device)
|
| 1563 |
+
if self.config.problem_type is None:
|
| 1564 |
+
if self.num_labels == 1:
|
| 1565 |
+
self.config.problem_type = "regression"
|
| 1566 |
+
elif self.num_labels > 1 and (
|
| 1567 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
| 1568 |
+
):
|
| 1569 |
+
self.config.problem_type = "single_label_classification"
|
| 1570 |
+
else:
|
| 1571 |
+
self.config.problem_type = "multi_label_classification"
|
| 1572 |
+
|
| 1573 |
+
if self.config.problem_type == "regression":
|
| 1574 |
+
loss_fct = MSELoss()
|
| 1575 |
+
if self.num_labels == 1:
|
| 1576 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1577 |
+
else:
|
| 1578 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1579 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1580 |
+
loss_fct = CrossEntropyLoss()
|
| 1581 |
+
loss = loss_fct(
|
| 1582 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
| 1583 |
+
)
|
| 1584 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1585 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1586 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1587 |
+
if not return_dict:
|
| 1588 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1589 |
+
return ((loss,) + output) if loss is not None else output
|
| 1590 |
+
|
| 1591 |
+
return SequenceClassifierOutputWithPast(
|
| 1592 |
+
loss=loss,
|
| 1593 |
+
logits=pooled_logits,
|
| 1594 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1595 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1596 |
+
attentions=transformer_outputs.attentions,
|
| 1597 |
+
)
|
eagle/model/modeling_minicpm_kv.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
eagle/model/modeling_mixtral_kv.py
ADDED
|
@@ -0,0 +1,1199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
""" PyTorch Mixtral model."""
|
| 21 |
+
import inspect
|
| 22 |
+
import math
|
| 23 |
+
import warnings
|
| 24 |
+
from typing import List, Optional, Tuple, Union
|
| 25 |
+
from .kv_cache import KVCache
|
| 26 |
+
|
| 27 |
+
import torch
|
| 28 |
+
import torch.nn.functional as F
|
| 29 |
+
import torch.utils.checkpoint
|
| 30 |
+
from torch import nn
|
| 31 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 32 |
+
|
| 33 |
+
# [MODIFIED] Import from transformer library
|
| 34 |
+
from transformers.activations import ACT2FN
|
| 35 |
+
|
| 36 |
+
from transformers.modeling_outputs import (
|
| 37 |
+
MoeCausalLMOutputWithPast,
|
| 38 |
+
MoeModelOutputWithPast,
|
| 39 |
+
SequenceClassifierOutputWithPast,
|
| 40 |
+
)
|
| 41 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 42 |
+
from transformers.utils import (
|
| 43 |
+
add_start_docstrings,
|
| 44 |
+
add_start_docstrings_to_model_forward,
|
| 45 |
+
logging,
|
| 46 |
+
replace_return_docstrings,
|
| 47 |
+
)
|
| 48 |
+
from transformers import MixtralConfig
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
| 54 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
logger = logging.get_logger(__name__)
|
| 59 |
+
|
| 60 |
+
_CONFIG_FOR_DOC = "MixtralConfig"
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def _make_causal_mask(
|
| 64 |
+
input_ids_shape: torch.Size,
|
| 65 |
+
dtype: torch.dtype,
|
| 66 |
+
device: torch.device,
|
| 67 |
+
past_key_values_length: int = 0,
|
| 68 |
+
):
|
| 69 |
+
"""
|
| 70 |
+
Create a causal mask for bi-directional self-attention.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
input_ids_shape (torch.Size): The shape of input_ids tensor, typically (batch_size, tgt_len).
|
| 74 |
+
dtype (torch.dtype): The data type of the mask.
|
| 75 |
+
device (torch.device): The device on which the mask will be placed.
|
| 76 |
+
past_key_values_length (int, optional): The length of past key values. Default is 0.
|
| 77 |
+
|
| 78 |
+
Returns:
|
| 79 |
+
torch.Tensor: The causal mask tensor.
|
| 80 |
+
"""
|
| 81 |
+
bsz, tgt_len = input_ids_shape
|
| 82 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
| 83 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 84 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 85 |
+
mask = mask.to(dtype)
|
| 86 |
+
|
| 87 |
+
if past_key_values_length > 0:
|
| 88 |
+
mask = torch.cat(
|
| 89 |
+
[
|
| 90 |
+
torch.zeros(
|
| 91 |
+
tgt_len, past_key_values_length, dtype=dtype, device=device
|
| 92 |
+
),
|
| 93 |
+
mask,
|
| 94 |
+
],
|
| 95 |
+
dim=-1,
|
| 96 |
+
)
|
| 97 |
+
return mask[None, None, :, :].expand(
|
| 98 |
+
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 103 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 104 |
+
"""
|
| 105 |
+
Expand attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 106 |
+
|
| 107 |
+
Args:
|
| 108 |
+
mask (torch.Tensor): The attention mask tensor of shape `[bsz, seq_len]`.
|
| 109 |
+
dtype (torch.dtype): The data type of the mask.
|
| 110 |
+
tgt_len (Optional[int], optional): The target sequence length. If None, it defaults to the source sequence length.
|
| 111 |
+
|
| 112 |
+
Returns:
|
| 113 |
+
torch.Tensor: The expanded mask tensor.
|
| 114 |
+
"""
|
| 115 |
+
bsz, src_len = mask.size()
|
| 116 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 117 |
+
|
| 118 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 119 |
+
|
| 120 |
+
inverted_mask = 1.0 - expanded_mask
|
| 121 |
+
|
| 122 |
+
return inverted_mask.masked_fill(
|
| 123 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2) -> float:
|
| 128 |
+
r"""
|
| 129 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
| 130 |
+
|
| 131 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
| 132 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
| 133 |
+
experts is too unbalanced.
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
| 137 |
+
Logits from the `gate`, should be a tuple of tensors. Shape: [batch_size, seqeunce_length, num_experts].
|
| 138 |
+
num_experts (`int`, *optional*):
|
| 139 |
+
Number of experts
|
| 140 |
+
|
| 141 |
+
Returns:
|
| 142 |
+
The auxiliary loss.
|
| 143 |
+
"""
|
| 144 |
+
if gate_logits is None:
|
| 145 |
+
return 0
|
| 146 |
+
|
| 147 |
+
if isinstance(gate_logits, tuple):
|
| 148 |
+
# cat along the layers?
|
| 149 |
+
compute_device = gate_logits[0].device
|
| 150 |
+
gate_logits = torch.cat([gate.to(compute_device) for gate in gate_logits], dim=0)
|
| 151 |
+
|
| 152 |
+
routing_weights, selected_experts = torch.topk(gate_logits, top_k, dim=-1)
|
| 153 |
+
routing_weights = routing_weights.softmax(dim=-1)
|
| 154 |
+
|
| 155 |
+
# cast the expert indices to int64, otherwise one-hot encoding will fail
|
| 156 |
+
if selected_experts.dtype != torch.int64:
|
| 157 |
+
selected_experts = selected_experts.to(torch.int64)
|
| 158 |
+
|
| 159 |
+
if len(selected_experts.shape) == 2:
|
| 160 |
+
selected_experts = selected_experts.unsqueeze(2)
|
| 161 |
+
|
| 162 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
| 163 |
+
|
| 164 |
+
# For a given token, determine if it was routed to a given expert.
|
| 165 |
+
expert_mask = torch.max(expert_mask, axis=-2).values
|
| 166 |
+
|
| 167 |
+
# cast to float32 otherwise mean will fail
|
| 168 |
+
expert_mask = expert_mask.to(torch.float32)
|
| 169 |
+
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2)
|
| 170 |
+
|
| 171 |
+
router_prob_per_group_and_expert = torch.mean(routing_weights, axis=-1)
|
| 172 |
+
return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert.unsqueeze(-1)) * (num_experts**2)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 176 |
+
def _get_unpad_data(attention_mask):
|
| 177 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 178 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 179 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 180 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
| 181 |
+
return (
|
| 182 |
+
indices,
|
| 183 |
+
cu_seqlens,
|
| 184 |
+
max_seqlen_in_batch,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mixtral
|
| 189 |
+
class MixtralRMSNorm(nn.Module):
|
| 190 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 191 |
+
"""
|
| 192 |
+
MixtralRMSNorm is equivalent to T5LayerNorm
|
| 193 |
+
"""
|
| 194 |
+
super().__init__()
|
| 195 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 196 |
+
self.variance_epsilon = eps
|
| 197 |
+
|
| 198 |
+
def forward(self, hidden_states):
|
| 199 |
+
input_dtype = hidden_states.dtype
|
| 200 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 201 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 202 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 203 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mixtral
|
| 207 |
+
class MixtralRotaryEmbedding(nn.Module):
|
| 208 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 209 |
+
super().__init__()
|
| 210 |
+
|
| 211 |
+
self.dim = dim
|
| 212 |
+
self.max_position_embeddings = max_position_embeddings
|
| 213 |
+
self.base = base
|
| 214 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 215 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 216 |
+
|
| 217 |
+
# Build here to make `torch.jit.trace` work.
|
| 218 |
+
self._set_cos_sin_cache(
|
| 219 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 223 |
+
self.max_seq_len_cached = seq_len
|
| 224 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 225 |
+
|
| 226 |
+
freqs = torch.outer(t, self.inv_freq)
|
| 227 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 228 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 229 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 230 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 231 |
+
|
| 232 |
+
def forward(self, x, seq_len=None):
|
| 233 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 234 |
+
if seq_len > self.max_seq_len_cached:
|
| 235 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 236 |
+
|
| 237 |
+
return (
|
| 238 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
| 239 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 244 |
+
def rotate_half(x):
|
| 245 |
+
"""Rotates half the hidden dims of the input."""
|
| 246 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 247 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 248 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
| 252 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
| 253 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 254 |
+
|
| 255 |
+
Args:
|
| 256 |
+
q (`torch.Tensor`): The query tensor.
|
| 257 |
+
k (`torch.Tensor`): The key tensor.
|
| 258 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 259 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 260 |
+
position_ids (`torch.Tensor`):
|
| 261 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
| 262 |
+
used to pass offsetted position ids when working with a KV-cache.
|
| 263 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 264 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 265 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 266 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 267 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 268 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 269 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 270 |
+
Returns:
|
| 271 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 272 |
+
"""
|
| 273 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
| 274 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
| 275 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 276 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 277 |
+
return q_embed, k_embed
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 281 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 282 |
+
"""
|
| 283 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 284 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 285 |
+
"""
|
| 286 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 287 |
+
if n_rep == 1:
|
| 288 |
+
return hidden_states
|
| 289 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 290 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Mixtral
|
| 294 |
+
class MixtralAttention(nn.Module):
|
| 295 |
+
"""
|
| 296 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
| 297 |
+
and "Generating Long Sequences with Sparse Transformers".
|
| 298 |
+
"""
|
| 299 |
+
|
| 300 |
+
def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None):
|
| 301 |
+
super().__init__()
|
| 302 |
+
self.config = config
|
| 303 |
+
self.layer_idx = layer_idx
|
| 304 |
+
if layer_idx is None:
|
| 305 |
+
logger.warning_once(
|
| 306 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
| 307 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
| 308 |
+
"when creating this class."
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
self.hidden_size = config.hidden_size
|
| 312 |
+
self.num_heads = config.num_attention_heads
|
| 313 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 314 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 315 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 316 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 317 |
+
self.rope_theta = config.rope_theta
|
| 318 |
+
self.is_causal = True
|
| 319 |
+
self.attention_dropout = config.attention_dropout
|
| 320 |
+
|
| 321 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 322 |
+
raise ValueError(
|
| 323 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 324 |
+
f" and `num_heads`: {self.num_heads})."
|
| 325 |
+
)
|
| 326 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 327 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 328 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 329 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 330 |
+
|
| 331 |
+
self.rotary_emb = MixtralRotaryEmbedding(
|
| 332 |
+
self.head_dim,
|
| 333 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 334 |
+
base=self.rope_theta,
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 338 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 339 |
+
|
| 340 |
+
def forward(
|
| 341 |
+
self,
|
| 342 |
+
hidden_states: torch.Tensor,
|
| 343 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 344 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 345 |
+
past_key_value: Optional[Tuple[KVCache]] = None,
|
| 346 |
+
output_attentions: bool = False,
|
| 347 |
+
use_cache: bool = False,
|
| 348 |
+
**kwargs,
|
| 349 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 350 |
+
if "padding_mask" in kwargs:
|
| 351 |
+
warnings.warn(
|
| 352 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 353 |
+
)
|
| 354 |
+
bsz, q_len, _ = hidden_states.size()
|
| 355 |
+
|
| 356 |
+
query_states = self.q_proj(hidden_states)
|
| 357 |
+
key_states = self.k_proj(hidden_states)
|
| 358 |
+
value_states = self.v_proj(hidden_states)
|
| 359 |
+
|
| 360 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 361 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 362 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 363 |
+
|
| 364 |
+
kv_seq_len = key_states.shape[-2]
|
| 365 |
+
if past_key_value is not None:
|
| 366 |
+
if self.layer_idx is None:
|
| 367 |
+
raise ValueError(
|
| 368 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
| 369 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
| 370 |
+
"with a layer index."
|
| 371 |
+
)
|
| 372 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 373 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 374 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 375 |
+
|
| 376 |
+
if past_key_value is not None:
|
| 377 |
+
key_states = past_key_value[0].cat(key_states, dim=2)
|
| 378 |
+
value_states = past_key_value[1].cat(value_states, dim=2)
|
| 379 |
+
|
| 380 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 381 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 382 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 383 |
+
|
| 384 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 385 |
+
|
| 386 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 387 |
+
raise ValueError(
|
| 388 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 389 |
+
f" {attn_weights.size()}"
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
if attention_mask is not None:
|
| 393 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 394 |
+
raise ValueError(
|
| 395 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
attn_weights = attn_weights + attention_mask
|
| 399 |
+
|
| 400 |
+
# upcast attention to fp32
|
| 401 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 402 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 403 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 404 |
+
|
| 405 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 406 |
+
raise ValueError(
|
| 407 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 408 |
+
f" {attn_output.size()}"
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 412 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 413 |
+
|
| 414 |
+
attn_output = self.o_proj(attn_output)
|
| 415 |
+
|
| 416 |
+
if not output_attentions:
|
| 417 |
+
attn_weights = None
|
| 418 |
+
|
| 419 |
+
return attn_output, attn_weights, past_key_value
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Mixtral
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
class MixtralBLockSparseTop2MLP(nn.Module):
|
| 427 |
+
def __init__(self, config: MixtralConfig):
|
| 428 |
+
super().__init__()
|
| 429 |
+
self.ffn_dim = config.intermediate_size
|
| 430 |
+
self.hidden_dim = config.hidden_size
|
| 431 |
+
|
| 432 |
+
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
| 433 |
+
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
| 434 |
+
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
| 435 |
+
|
| 436 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 437 |
+
|
| 438 |
+
def forward(self, hidden_states, routing_weights):
|
| 439 |
+
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
| 440 |
+
current_hidden_states = self.w2(current_hidden_states)
|
| 441 |
+
return routing_weights * current_hidden_states
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
MISTRAL_ATTENTION_CLASSES = {
|
| 445 |
+
"eager": MixtralAttention,
|
| 446 |
+
}
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
class MixtralSparseMoeBlock(nn.Module):
|
| 450 |
+
"""
|
| 451 |
+
This implementation is
|
| 452 |
+
strictly equivalent to standard MoE with full capacity (no
|
| 453 |
+
dropped tokens). It's faster since it formulates MoE operations
|
| 454 |
+
in terms of block-sparse operations to accomodate imbalanced
|
| 455 |
+
assignments of tokens to experts, whereas standard MoE either
|
| 456 |
+
(1) drop tokens at the cost of reduced performance or (2) set
|
| 457 |
+
capacity factor to number of experts and thus waste computation
|
| 458 |
+
and memory on padding.
|
| 459 |
+
"""
|
| 460 |
+
|
| 461 |
+
def __init__(self, config):
|
| 462 |
+
super().__init__()
|
| 463 |
+
self.hidden_dim = config.hidden_size
|
| 464 |
+
self.ffn_dim = config.intermediate_size
|
| 465 |
+
self.num_experts = config.num_local_experts
|
| 466 |
+
self.top_k = config.num_experts_per_tok
|
| 467 |
+
|
| 468 |
+
# gating
|
| 469 |
+
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
| 470 |
+
|
| 471 |
+
self.experts = nn.ModuleList([MixtralBLockSparseTop2MLP(config) for _ in range(self.num_experts)])
|
| 472 |
+
|
| 473 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 474 |
+
""" """
|
| 475 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
| 476 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
| 477 |
+
# router_logits: (batch * sequence_length, n_experts)
|
| 478 |
+
router_logits = self.gate(hidden_states)
|
| 479 |
+
|
| 480 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
| 481 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 482 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 483 |
+
# we cast back to the input dtype
|
| 484 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 485 |
+
|
| 486 |
+
final_hidden_states = torch.zeros(
|
| 487 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
# One hot encode the selected experts to create an expert mask
|
| 491 |
+
# this will be used to easily index which expert is going to be sollicitated
|
| 492 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
| 493 |
+
|
| 494 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
| 495 |
+
for expert_idx in range(self.num_experts):
|
| 496 |
+
expert_layer = self.experts[expert_idx]
|
| 497 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
| 498 |
+
|
| 499 |
+
if top_x.shape[0] == 0:
|
| 500 |
+
continue
|
| 501 |
+
|
| 502 |
+
# in torch it is faster to index using lists than torch tensors
|
| 503 |
+
top_x_list = top_x.tolist()
|
| 504 |
+
idx_list = idx.tolist()
|
| 505 |
+
|
| 506 |
+
# Index the correct hidden states and compute the expert hidden state for
|
| 507 |
+
# the current expert. We need to make sure to multiply the output hidden
|
| 508 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
| 509 |
+
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
|
| 510 |
+
current_hidden_states = expert_layer(current_state, routing_weights[top_x_list, idx_list, None])
|
| 511 |
+
|
| 512 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
| 513 |
+
# the `top_x` tensor here.
|
| 514 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
| 515 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
| 516 |
+
return final_hidden_states, router_logits
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
class MixtralDecoderLayer(nn.Module):
|
| 520 |
+
def __init__(self, config: MixtralConfig, layer_idx: int):
|
| 521 |
+
super().__init__()
|
| 522 |
+
self.hidden_size = config.hidden_size
|
| 523 |
+
|
| 524 |
+
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
| 525 |
+
|
| 526 |
+
self.block_sparse_moe = MixtralSparseMoeBlock(config)
|
| 527 |
+
self.input_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 528 |
+
self.post_attention_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 529 |
+
|
| 530 |
+
def forward(
|
| 531 |
+
self,
|
| 532 |
+
hidden_states: torch.Tensor,
|
| 533 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 534 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 535 |
+
past_key_value: Optional[Tuple[KVCache]] = None,
|
| 536 |
+
output_attentions: Optional[bool] = False,
|
| 537 |
+
output_router_logits: Optional[bool] = False,
|
| 538 |
+
use_cache: Optional[bool] = False,
|
| 539 |
+
**kwargs,
|
| 540 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 541 |
+
if "padding_mask" in kwargs:
|
| 542 |
+
warnings.warn(
|
| 543 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 544 |
+
)
|
| 545 |
+
"""
|
| 546 |
+
Args:
|
| 547 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 548 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 549 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
| 550 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 551 |
+
output_attentions (`bool`, *optional*):
|
| 552 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 553 |
+
returned tensors for more detail.
|
| 554 |
+
output_router_logits (`bool`, *optional*):
|
| 555 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
| 556 |
+
should not be returned during inference.
|
| 557 |
+
use_cache (`bool`, *optional*):
|
| 558 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 559 |
+
(see `past_key_values`).
|
| 560 |
+
"""
|
| 561 |
+
|
| 562 |
+
residual = hidden_states
|
| 563 |
+
|
| 564 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 565 |
+
|
| 566 |
+
# Self Attention
|
| 567 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 568 |
+
hidden_states=hidden_states,
|
| 569 |
+
attention_mask=attention_mask,
|
| 570 |
+
position_ids=position_ids,
|
| 571 |
+
past_key_value=past_key_value,
|
| 572 |
+
output_attentions=output_attentions,
|
| 573 |
+
use_cache=use_cache,
|
| 574 |
+
)
|
| 575 |
+
hidden_states = residual + hidden_states
|
| 576 |
+
|
| 577 |
+
# Fully Connected
|
| 578 |
+
residual = hidden_states
|
| 579 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 580 |
+
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
| 581 |
+
hidden_states = residual + hidden_states
|
| 582 |
+
|
| 583 |
+
outputs = (hidden_states,)
|
| 584 |
+
|
| 585 |
+
if output_attentions:
|
| 586 |
+
outputs += (self_attn_weights,)
|
| 587 |
+
|
| 588 |
+
if use_cache:
|
| 589 |
+
outputs += (present_key_value,)
|
| 590 |
+
|
| 591 |
+
if output_router_logits:
|
| 592 |
+
outputs += (router_logits,)
|
| 593 |
+
|
| 594 |
+
return outputs
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
MIXTRAL_START_DOCSTRING = r"""
|
| 598 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 599 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 600 |
+
etc.)
|
| 601 |
+
|
| 602 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 603 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 604 |
+
and behavior.
|
| 605 |
+
|
| 606 |
+
Parameters:
|
| 607 |
+
config ([`MixtralConfig`]):
|
| 608 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 609 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 610 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 611 |
+
"""
|
| 612 |
+
|
| 613 |
+
|
| 614 |
+
@add_start_docstrings(
|
| 615 |
+
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.",
|
| 616 |
+
MIXTRAL_START_DOCSTRING,
|
| 617 |
+
)
|
| 618 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->Mixtral
|
| 619 |
+
class MixtralPreTrainedModel(PreTrainedModel):
|
| 620 |
+
config_class = MixtralConfig
|
| 621 |
+
base_model_prefix = "model"
|
| 622 |
+
supports_gradient_checkpointing = True
|
| 623 |
+
_no_split_modules = ["MixtralDecoderLayer"]
|
| 624 |
+
_skip_keys_device_placement = "past_key_values"
|
| 625 |
+
_supports_flash_attn_2 = True
|
| 626 |
+
_supports_cache_class = True
|
| 627 |
+
|
| 628 |
+
def _init_weights(self, module):
|
| 629 |
+
std = self.config.initializer_range
|
| 630 |
+
if isinstance(module, nn.Linear):
|
| 631 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 632 |
+
if module.bias is not None:
|
| 633 |
+
module.bias.data.zero_()
|
| 634 |
+
elif isinstance(module, nn.Embedding):
|
| 635 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 636 |
+
if module.padding_idx is not None:
|
| 637 |
+
module.weight.data[module.padding_idx].zero_()
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
MIXTRAL_INPUTS_DOCSTRING = r"""
|
| 641 |
+
Args:
|
| 642 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 643 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 644 |
+
it.
|
| 645 |
+
|
| 646 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 647 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 648 |
+
|
| 649 |
+
[What are input IDs?](../glossary#input-ids)
|
| 650 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 651 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 652 |
+
|
| 653 |
+
- 1 for tokens that are **not masked**,
|
| 654 |
+
- 0 for tokens that are **masked**.
|
| 655 |
+
|
| 656 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 657 |
+
|
| 658 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 659 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 660 |
+
|
| 661 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 662 |
+
`past_key_values`).
|
| 663 |
+
|
| 664 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 665 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 666 |
+
information on the default strategy.
|
| 667 |
+
|
| 668 |
+
- 1 indicates the head is **not masked**,
|
| 669 |
+
- 0 indicates the head is **masked**.
|
| 670 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 671 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 672 |
+
config.n_positions - 1]`.
|
| 673 |
+
|
| 674 |
+
[What are position IDs?](../glossary#position-ids)
|
| 675 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 676 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 677 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 678 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
| 679 |
+
|
| 680 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 681 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 682 |
+
|
| 683 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 684 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 685 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 686 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 687 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 688 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 689 |
+
model's internal embedding lookup matrix.
|
| 690 |
+
use_cache (`bool`, *optional*):
|
| 691 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 692 |
+
`past_key_values`).
|
| 693 |
+
output_attentions (`bool`, *optional*):
|
| 694 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 695 |
+
tensors for more detail.
|
| 696 |
+
output_hidden_states (`bool`, *optional*):
|
| 697 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 698 |
+
more detail.
|
| 699 |
+
output_router_logits (`bool`, *optional*):
|
| 700 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
| 701 |
+
should not be returned during inference.
|
| 702 |
+
return_dict (`bool`, *optional*):
|
| 703 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 704 |
+
"""
|
| 705 |
+
|
| 706 |
+
|
| 707 |
+
@add_start_docstrings(
|
| 708 |
+
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.",
|
| 709 |
+
MIXTRAL_START_DOCSTRING,
|
| 710 |
+
)
|
| 711 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->Mixtral
|
| 712 |
+
class MixtralModel(MixtralPreTrainedModel):
|
| 713 |
+
"""
|
| 714 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`]
|
| 715 |
+
|
| 716 |
+
Args:
|
| 717 |
+
config: MixtralConfig
|
| 718 |
+
"""
|
| 719 |
+
|
| 720 |
+
def __init__(self, config: MixtralConfig):
|
| 721 |
+
super().__init__(config)
|
| 722 |
+
self.padding_idx = config.pad_token_id
|
| 723 |
+
self.vocab_size = config.vocab_size
|
| 724 |
+
|
| 725 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 726 |
+
self.layers = nn.ModuleList(
|
| 727 |
+
[MixtralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 728 |
+
)
|
| 729 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 730 |
+
self.norm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 731 |
+
|
| 732 |
+
self.gradient_checkpointing = False
|
| 733 |
+
# Initialize weights and apply final processing
|
| 734 |
+
self.post_init()
|
| 735 |
+
|
| 736 |
+
def get_input_embeddings(self):
|
| 737 |
+
return self.embed_tokens
|
| 738 |
+
|
| 739 |
+
def set_input_embeddings(self, value):
|
| 740 |
+
self.embed_tokens = value
|
| 741 |
+
|
| 742 |
+
def _prepare_decoder_attention_mask(
|
| 743 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
| 744 |
+
):
|
| 745 |
+
# create causal mask
|
| 746 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 747 |
+
combined_attention_mask = None
|
| 748 |
+
if input_shape[-1] > 1:
|
| 749 |
+
combined_attention_mask = _make_causal_mask(
|
| 750 |
+
input_shape,
|
| 751 |
+
# inputs_embeds.dtype,
|
| 752 |
+
torch.float32, # [MODIFIED] force to cast to float32
|
| 753 |
+
device=inputs_embeds.device,
|
| 754 |
+
past_key_values_length=past_key_values_length,
|
| 755 |
+
)
|
| 756 |
+
|
| 757 |
+
if attention_mask is not None:
|
| 758 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 759 |
+
expanded_attn_mask = _expand_mask(
|
| 760 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
| 761 |
+
).to(inputs_embeds.device)
|
| 762 |
+
combined_attention_mask = (
|
| 763 |
+
expanded_attn_mask
|
| 764 |
+
if combined_attention_mask is None
|
| 765 |
+
else expanded_attn_mask + combined_attention_mask
|
| 766 |
+
)
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
if hasattr(self, "tree_mask") and self.tree_mask is not None:
|
| 770 |
+
tree_mask = self.tree_mask
|
| 771 |
+
tree_len = tree_mask.size(-1)
|
| 772 |
+
combined_attention_mask[:, :, -tree_len:, -tree_len:][
|
| 773 |
+
tree_mask == 0
|
| 774 |
+
] = combined_attention_mask.min()
|
| 775 |
+
|
| 776 |
+
return combined_attention_mask
|
| 777 |
+
|
| 778 |
+
# Ignore copy
|
| 779 |
+
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
| 780 |
+
def forward(
|
| 781 |
+
self,
|
| 782 |
+
input_ids: torch.LongTensor = None,
|
| 783 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 784 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 785 |
+
past_key_values: Optional[List[Tuple[KVCache]]] = None,
|
| 786 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 787 |
+
use_cache: Optional[bool] = None,
|
| 788 |
+
output_attentions: Optional[bool] = None,
|
| 789 |
+
output_hidden_states: Optional[bool] = None,
|
| 790 |
+
output_router_logits: Optional[bool] = None,
|
| 791 |
+
return_dict: Optional[bool] = None,
|
| 792 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
| 793 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 794 |
+
output_router_logits = (
|
| 795 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 796 |
+
)
|
| 797 |
+
output_hidden_states = (
|
| 798 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 799 |
+
)
|
| 800 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 801 |
+
|
| 802 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 803 |
+
|
| 804 |
+
# retrieve input_ids and inputs_embeds
|
| 805 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 806 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 807 |
+
elif input_ids is not None:
|
| 808 |
+
batch_size, seq_length = input_ids.shape
|
| 809 |
+
elif inputs_embeds is not None:
|
| 810 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 811 |
+
else:
|
| 812 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 813 |
+
|
| 814 |
+
past_key_values_length = 0
|
| 815 |
+
|
| 816 |
+
if self.gradient_checkpointing and self.training:
|
| 817 |
+
if use_cache:
|
| 818 |
+
logger.warning_once(
|
| 819 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 820 |
+
)
|
| 821 |
+
use_cache = False
|
| 822 |
+
|
| 823 |
+
if past_key_values is not None:
|
| 824 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 825 |
+
|
| 826 |
+
if position_ids is None:
|
| 827 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 828 |
+
position_ids = torch.arange(
|
| 829 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 830 |
+
)
|
| 831 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 832 |
+
else:
|
| 833 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 834 |
+
|
| 835 |
+
if inputs_embeds is None:
|
| 836 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 837 |
+
|
| 838 |
+
if attention_mask is not None and self._use_flash_attention_2 and use_cache:
|
| 839 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
| 840 |
+
if is_padding_right:
|
| 841 |
+
raise ValueError(
|
| 842 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
| 843 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to "
|
| 844 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 845 |
+
)
|
| 846 |
+
|
| 847 |
+
# if self._use_flash_attention_2:
|
| 848 |
+
# # 2d mask is passed through the layers
|
| 849 |
+
# attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 850 |
+
# else:
|
| 851 |
+
# 4d mask is passed through the layers
|
| 852 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 853 |
+
attention_mask,
|
| 854 |
+
(batch_size, seq_length),
|
| 855 |
+
inputs_embeds,
|
| 856 |
+
past_key_values_length,
|
| 857 |
+
)
|
| 858 |
+
|
| 859 |
+
hidden_states = inputs_embeds
|
| 860 |
+
|
| 861 |
+
# decoder layers
|
| 862 |
+
all_hidden_states = () if output_hidden_states else None
|
| 863 |
+
all_self_attns = () if output_attentions else None
|
| 864 |
+
all_router_logits = () if output_router_logits else None
|
| 865 |
+
next_decoder_cache = None
|
| 866 |
+
|
| 867 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 868 |
+
if output_hidden_states:
|
| 869 |
+
all_hidden_states += (hidden_states,)
|
| 870 |
+
|
| 871 |
+
past_key_value = (
|
| 872 |
+
past_key_values[idx] if past_key_values is not None else None
|
| 873 |
+
)
|
| 874 |
+
|
| 875 |
+
if self.gradient_checkpointing and self.training:
|
| 876 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 877 |
+
decoder_layer.__call__,
|
| 878 |
+
hidden_states,
|
| 879 |
+
attention_mask,
|
| 880 |
+
position_ids,
|
| 881 |
+
past_key_value,
|
| 882 |
+
output_attentions,
|
| 883 |
+
output_router_logits,
|
| 884 |
+
use_cache,
|
| 885 |
+
)
|
| 886 |
+
else:
|
| 887 |
+
layer_outputs = decoder_layer(
|
| 888 |
+
hidden_states,
|
| 889 |
+
attention_mask=attention_mask,
|
| 890 |
+
position_ids=position_ids,
|
| 891 |
+
past_key_value=past_key_value,
|
| 892 |
+
output_attentions=output_attentions,
|
| 893 |
+
output_router_logits=output_router_logits,
|
| 894 |
+
use_cache=use_cache,
|
| 895 |
+
)
|
| 896 |
+
|
| 897 |
+
hidden_states = layer_outputs[0]
|
| 898 |
+
|
| 899 |
+
if use_cache:
|
| 900 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 901 |
+
|
| 902 |
+
if output_attentions:
|
| 903 |
+
all_self_attns += (layer_outputs[1],)
|
| 904 |
+
|
| 905 |
+
if output_router_logits:
|
| 906 |
+
all_router_logits += (layer_outputs[-1],)
|
| 907 |
+
|
| 908 |
+
hidden_states = self.norm(hidden_states)
|
| 909 |
+
|
| 910 |
+
# add hidden states from the last decoder layer
|
| 911 |
+
if output_hidden_states:
|
| 912 |
+
all_hidden_states += (hidden_states,)
|
| 913 |
+
|
| 914 |
+
|
| 915 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 916 |
+
# if use_cache:
|
| 917 |
+
# next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
| 918 |
+
|
| 919 |
+
if not return_dict:
|
| 920 |
+
return tuple(
|
| 921 |
+
v
|
| 922 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
| 923 |
+
if v is not None
|
| 924 |
+
)
|
| 925 |
+
return MoeModelOutputWithPast(
|
| 926 |
+
last_hidden_state=hidden_states,
|
| 927 |
+
past_key_values=next_cache,
|
| 928 |
+
hidden_states=all_hidden_states,
|
| 929 |
+
attentions=all_self_attns,
|
| 930 |
+
router_logits=all_router_logits,
|
| 931 |
+
)
|
| 932 |
+
|
| 933 |
+
|
| 934 |
+
class MixtralForCausalLM(MixtralPreTrainedModel):
|
| 935 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 936 |
+
|
| 937 |
+
def __init__(self, config):
|
| 938 |
+
super().__init__(config)
|
| 939 |
+
self.model = MixtralModel(config)
|
| 940 |
+
self.vocab_size = config.vocab_size
|
| 941 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 942 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
| 943 |
+
self.num_experts = config.num_local_experts
|
| 944 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
| 945 |
+
# Initialize weights and apply final processing
|
| 946 |
+
self.post_init()
|
| 947 |
+
|
| 948 |
+
def get_input_embeddings(self):
|
| 949 |
+
return self.model.embed_tokens
|
| 950 |
+
|
| 951 |
+
def set_input_embeddings(self, value):
|
| 952 |
+
self.model.embed_tokens = value
|
| 953 |
+
|
| 954 |
+
def get_output_embeddings(self):
|
| 955 |
+
return self.lm_head
|
| 956 |
+
|
| 957 |
+
def set_output_embeddings(self, new_embeddings):
|
| 958 |
+
self.lm_head = new_embeddings
|
| 959 |
+
|
| 960 |
+
def set_decoder(self, decoder):
|
| 961 |
+
self.model = decoder
|
| 962 |
+
|
| 963 |
+
def get_decoder(self):
|
| 964 |
+
return self.model
|
| 965 |
+
|
| 966 |
+
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
| 967 |
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 968 |
+
# Ignore copy
|
| 969 |
+
def forward(
|
| 970 |
+
self,
|
| 971 |
+
input_ids: torch.LongTensor = None,
|
| 972 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 973 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 974 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 975 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 976 |
+
labels: Optional[torch.LongTensor] = None,
|
| 977 |
+
use_cache: Optional[bool] = None,
|
| 978 |
+
output_attentions: Optional[bool] = None,
|
| 979 |
+
output_hidden_states: Optional[bool] = None,
|
| 980 |
+
output_router_logits: Optional[bool] = None,
|
| 981 |
+
return_dict: Optional[bool] = None,
|
| 982 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
| 983 |
+
r"""
|
| 984 |
+
Args:
|
| 985 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 986 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 987 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 988 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 989 |
+
|
| 990 |
+
Returns:
|
| 991 |
+
|
| 992 |
+
Example:
|
| 993 |
+
|
| 994 |
+
```python
|
| 995 |
+
>>> from transformers import AutoTokenizer, MixtralForCausalLM
|
| 996 |
+
|
| 997 |
+
>>> model = MixtralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 998 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 999 |
+
|
| 1000 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1001 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1002 |
+
|
| 1003 |
+
>>> # Generate
|
| 1004 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1005 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1006 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1007 |
+
```"""
|
| 1008 |
+
|
| 1009 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1010 |
+
output_router_logits = (
|
| 1011 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 1012 |
+
)
|
| 1013 |
+
|
| 1014 |
+
output_hidden_states = (
|
| 1015 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1016 |
+
)
|
| 1017 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1018 |
+
|
| 1019 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1020 |
+
outputs = self.model(
|
| 1021 |
+
input_ids=input_ids,
|
| 1022 |
+
attention_mask=attention_mask,
|
| 1023 |
+
position_ids=position_ids,
|
| 1024 |
+
past_key_values=past_key_values,
|
| 1025 |
+
inputs_embeds=inputs_embeds,
|
| 1026 |
+
use_cache=use_cache,
|
| 1027 |
+
output_attentions=output_attentions,
|
| 1028 |
+
output_hidden_states=output_hidden_states,
|
| 1029 |
+
output_router_logits=output_router_logits,
|
| 1030 |
+
return_dict=return_dict,
|
| 1031 |
+
)
|
| 1032 |
+
|
| 1033 |
+
hidden_states = outputs[0]
|
| 1034 |
+
logits = self.lm_head(hidden_states)
|
| 1035 |
+
logits = logits.float()
|
| 1036 |
+
|
| 1037 |
+
loss = None
|
| 1038 |
+
if labels is not None:
|
| 1039 |
+
# Shift so that tokens < n predict n
|
| 1040 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1041 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1042 |
+
# Flatten the tokens
|
| 1043 |
+
loss_fct = CrossEntropyLoss()
|
| 1044 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1045 |
+
shift_labels = shift_labels.view(-1)
|
| 1046 |
+
# Enable model parallelism
|
| 1047 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1048 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1049 |
+
|
| 1050 |
+
aux_loss = None
|
| 1051 |
+
if output_router_logits:
|
| 1052 |
+
aux_loss = load_balancing_loss_func(
|
| 1053 |
+
outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok
|
| 1054 |
+
)
|
| 1055 |
+
if labels is not None:
|
| 1056 |
+
loss += self.router_aux_loss_coef * aux_loss
|
| 1057 |
+
|
| 1058 |
+
if not return_dict:
|
| 1059 |
+
output = (logits,) + outputs[1:]
|
| 1060 |
+
if output_router_logits:
|
| 1061 |
+
output = (aux_loss,) + output
|
| 1062 |
+
return (loss,) + output if loss is not None else output
|
| 1063 |
+
|
| 1064 |
+
return MoeCausalLMOutputWithPast(
|
| 1065 |
+
loss=loss,
|
| 1066 |
+
aux_loss=aux_loss,
|
| 1067 |
+
logits=logits,
|
| 1068 |
+
past_key_values=outputs.past_key_values,
|
| 1069 |
+
hidden_states=outputs.hidden_states,
|
| 1070 |
+
attentions=outputs.attentions,
|
| 1071 |
+
router_logits=outputs.router_logits,
|
| 1072 |
+
)
|
| 1073 |
+
|
| 1074 |
+
|
| 1075 |
+
|
| 1076 |
+
|
| 1077 |
+
|
| 1078 |
+
|
| 1079 |
+
@add_start_docstrings(
|
| 1080 |
+
"""
|
| 1081 |
+
The Mixtral Model transformer with a sequence classification head on top (linear layer).
|
| 1082 |
+
|
| 1083 |
+
[`MixtralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1084 |
+
(e.g. GPT-2) do.
|
| 1085 |
+
|
| 1086 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1087 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1088 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1089 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1090 |
+
each row of the batch).
|
| 1091 |
+
""",
|
| 1092 |
+
MIXTRAL_START_DOCSTRING,
|
| 1093 |
+
)
|
| 1094 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mixtral, LLAMA->MIXTRAL
|
| 1095 |
+
class MixtralForSequenceClassification(MixtralPreTrainedModel):
|
| 1096 |
+
def __init__(self, config):
|
| 1097 |
+
super().__init__(config)
|
| 1098 |
+
self.num_labels = config.num_labels
|
| 1099 |
+
self.model = MixtralModel(config)
|
| 1100 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1101 |
+
|
| 1102 |
+
# Initialize weights and apply final processing
|
| 1103 |
+
self.post_init()
|
| 1104 |
+
|
| 1105 |
+
def get_input_embeddings(self):
|
| 1106 |
+
return self.model.embed_tokens
|
| 1107 |
+
|
| 1108 |
+
def set_input_embeddings(self, value):
|
| 1109 |
+
self.model.embed_tokens = value
|
| 1110 |
+
|
| 1111 |
+
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
| 1112 |
+
def forward(
|
| 1113 |
+
self,
|
| 1114 |
+
input_ids: torch.LongTensor = None,
|
| 1115 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1116 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1117 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1118 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1119 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1120 |
+
use_cache: Optional[bool] = None,
|
| 1121 |
+
output_attentions: Optional[bool] = None,
|
| 1122 |
+
output_hidden_states: Optional[bool] = None,
|
| 1123 |
+
return_dict: Optional[bool] = None,
|
| 1124 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1125 |
+
r"""
|
| 1126 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1127 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1128 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1129 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1130 |
+
"""
|
| 1131 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1132 |
+
|
| 1133 |
+
transformer_outputs = self.model(
|
| 1134 |
+
input_ids,
|
| 1135 |
+
attention_mask=attention_mask,
|
| 1136 |
+
position_ids=position_ids,
|
| 1137 |
+
past_key_values=past_key_values,
|
| 1138 |
+
inputs_embeds=inputs_embeds,
|
| 1139 |
+
use_cache=use_cache,
|
| 1140 |
+
output_attentions=output_attentions,
|
| 1141 |
+
output_hidden_states=output_hidden_states,
|
| 1142 |
+
return_dict=return_dict,
|
| 1143 |
+
)
|
| 1144 |
+
hidden_states = transformer_outputs[0]
|
| 1145 |
+
logits = self.score(hidden_states)
|
| 1146 |
+
|
| 1147 |
+
if input_ids is not None:
|
| 1148 |
+
batch_size = input_ids.shape[0]
|
| 1149 |
+
else:
|
| 1150 |
+
batch_size = inputs_embeds.shape[0]
|
| 1151 |
+
|
| 1152 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1153 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 1154 |
+
if self.config.pad_token_id is None:
|
| 1155 |
+
sequence_lengths = -1
|
| 1156 |
+
else:
|
| 1157 |
+
if input_ids is not None:
|
| 1158 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
| 1159 |
+
logits.device
|
| 1160 |
+
)
|
| 1161 |
+
else:
|
| 1162 |
+
sequence_lengths = -1
|
| 1163 |
+
|
| 1164 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1165 |
+
|
| 1166 |
+
loss = None
|
| 1167 |
+
if labels is not None:
|
| 1168 |
+
labels = labels.to(logits.device)
|
| 1169 |
+
if self.config.problem_type is None:
|
| 1170 |
+
if self.num_labels == 1:
|
| 1171 |
+
self.config.problem_type = "regression"
|
| 1172 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1173 |
+
self.config.problem_type = "single_label_classification"
|
| 1174 |
+
else:
|
| 1175 |
+
self.config.problem_type = "multi_label_classification"
|
| 1176 |
+
|
| 1177 |
+
if self.config.problem_type == "regression":
|
| 1178 |
+
loss_fct = MSELoss()
|
| 1179 |
+
if self.num_labels == 1:
|
| 1180 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1181 |
+
else:
|
| 1182 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1183 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1184 |
+
loss_fct = CrossEntropyLoss()
|
| 1185 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1186 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1187 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1188 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1189 |
+
if not return_dict:
|
| 1190 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1191 |
+
return ((loss,) + output) if loss is not None else output
|
| 1192 |
+
|
| 1193 |
+
return SequenceClassifierOutputWithPast(
|
| 1194 |
+
loss=loss,
|
| 1195 |
+
logits=pooled_logits,
|
| 1196 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1197 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1198 |
+
attentions=transformer_outputs.attentions,
|
| 1199 |
+
)
|
eagle/model/modeling_qwen2_kv.py
ADDED
|
@@ -0,0 +1,1513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
"""PyTorch Qwen2 model."""
|
| 21 |
+
|
| 22 |
+
import math
|
| 23 |
+
from typing import List, Optional, Tuple, Union
|
| 24 |
+
|
| 25 |
+
import torch
|
| 26 |
+
import torch.utils.checkpoint
|
| 27 |
+
from torch import nn
|
| 28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 29 |
+
|
| 30 |
+
from transformers.activations import ACT2FN
|
| 31 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 32 |
+
from transformers.generation import GenerationMixin
|
| 33 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 34 |
+
from transformers.modeling_outputs import (
|
| 35 |
+
BaseModelOutputWithPast,
|
| 36 |
+
CausalLMOutputWithPast,
|
| 37 |
+
SequenceClassifierOutputWithPast,
|
| 38 |
+
TokenClassifierOutput,
|
| 39 |
+
)
|
| 40 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 41 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 42 |
+
from transformers.utils import (
|
| 43 |
+
add_start_docstrings,
|
| 44 |
+
add_start_docstrings_to_model_forward,
|
| 45 |
+
is_flash_attn_2_available,
|
| 46 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 47 |
+
is_torchdynamo_compiling,
|
| 48 |
+
logging,
|
| 49 |
+
replace_return_docstrings,
|
| 50 |
+
)
|
| 51 |
+
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
|
| 52 |
+
|
| 53 |
+
if is_flash_attn_2_available():
|
| 54 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
| 55 |
+
|
| 56 |
+
logger = logging.get_logger(__name__)
|
| 57 |
+
|
| 58 |
+
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
|
| 59 |
+
_CONFIG_FOR_DOC = "Qwen2Config"
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
|
| 63 |
+
class Qwen2RMSNorm(nn.Module):
|
| 64 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 65 |
+
"""
|
| 66 |
+
Qwen2RMSNorm is equivalent to T5LayerNorm
|
| 67 |
+
"""
|
| 68 |
+
super().__init__()
|
| 69 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 70 |
+
self.variance_epsilon = eps
|
| 71 |
+
|
| 72 |
+
def forward(self, hidden_states):
|
| 73 |
+
input_dtype = hidden_states.dtype
|
| 74 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 75 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 76 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 77 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 78 |
+
|
| 79 |
+
def extra_repr(self):
|
| 80 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Qwen2
|
| 84 |
+
class Qwen2RotaryEmbedding(nn.Module):
|
| 85 |
+
def __init__(
|
| 86 |
+
self,
|
| 87 |
+
dim=None,
|
| 88 |
+
max_position_embeddings=2048,
|
| 89 |
+
base=10000,
|
| 90 |
+
device=None,
|
| 91 |
+
scaling_factor=1.0,
|
| 92 |
+
rope_type="default",
|
| 93 |
+
config: Optional[Qwen2Config] = None,
|
| 94 |
+
):
|
| 95 |
+
super().__init__()
|
| 96 |
+
# TODO (joao): remove the `if` below, only used for BC
|
| 97 |
+
self.rope_kwargs = {}
|
| 98 |
+
if config is None:
|
| 99 |
+
logger.warning_once(
|
| 100 |
+
"`Qwen2RotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
| 101 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
| 102 |
+
)
|
| 103 |
+
self.rope_kwargs = {
|
| 104 |
+
"rope_type": rope_type,
|
| 105 |
+
"factor": scaling_factor,
|
| 106 |
+
"dim": dim,
|
| 107 |
+
"base": base,
|
| 108 |
+
"max_position_embeddings": max_position_embeddings,
|
| 109 |
+
}
|
| 110 |
+
self.rope_type = rope_type
|
| 111 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 112 |
+
self.original_max_seq_len = max_position_embeddings
|
| 113 |
+
else:
|
| 114 |
+
# BC: "rope_type" was originally "type"
|
| 115 |
+
if config.rope_scaling is not None:
|
| 116 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 117 |
+
else:
|
| 118 |
+
self.rope_type = "default"
|
| 119 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 120 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 121 |
+
|
| 122 |
+
self.config = config
|
| 123 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 124 |
+
|
| 125 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
| 126 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 127 |
+
self.original_inv_freq = self.inv_freq
|
| 128 |
+
|
| 129 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
| 130 |
+
"""
|
| 131 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 132 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
| 133 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 134 |
+
"""
|
| 135 |
+
seq_len = torch.max(position_ids) + 1
|
| 136 |
+
if seq_len > self.max_seq_len_cached: # growth
|
| 137 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
| 138 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
| 139 |
+
)
|
| 140 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
| 141 |
+
self.max_seq_len_cached = seq_len
|
| 142 |
+
|
| 143 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
| 144 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 145 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
| 146 |
+
|
| 147 |
+
@torch.no_grad()
|
| 148 |
+
def forward(self, x, position_ids):
|
| 149 |
+
if "dynamic" in self.rope_type:
|
| 150 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
| 151 |
+
|
| 152 |
+
# Core RoPE block
|
| 153 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 154 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 155 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 156 |
+
device_type = x.device.type
|
| 157 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 158 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 159 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 160 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 161 |
+
cos = emb.cos()
|
| 162 |
+
sin = emb.sin()
|
| 163 |
+
|
| 164 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 165 |
+
cos = cos * self.attention_scaling
|
| 166 |
+
sin = sin * self.attention_scaling
|
| 167 |
+
|
| 168 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 172 |
+
def rotate_half(x):
|
| 173 |
+
"""Rotates half the hidden dims of the input."""
|
| 174 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 175 |
+
x2 = x[..., x.shape[-1] // 2:]
|
| 176 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
| 180 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 181 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 182 |
+
|
| 183 |
+
Args:
|
| 184 |
+
q (`torch.Tensor`): The query tensor.
|
| 185 |
+
k (`torch.Tensor`): The key tensor.
|
| 186 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 187 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 188 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 189 |
+
Deprecated and unused.
|
| 190 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 191 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 192 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 193 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 194 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 195 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 196 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 197 |
+
Returns:
|
| 198 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 199 |
+
"""
|
| 200 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 201 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 202 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 203 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 204 |
+
return q_embed, k_embed
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
|
| 208 |
+
class Qwen2MLP(nn.Module):
|
| 209 |
+
def __init__(self, config):
|
| 210 |
+
super().__init__()
|
| 211 |
+
self.hidden_size = config.hidden_size
|
| 212 |
+
self.intermediate_size = config.intermediate_size
|
| 213 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 214 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 215 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 216 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 217 |
+
|
| 218 |
+
def forward(self, hidden_state):
|
| 219 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 223 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 224 |
+
"""
|
| 225 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 226 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 227 |
+
"""
|
| 228 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 229 |
+
if n_rep == 1:
|
| 230 |
+
return hidden_states
|
| 231 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 232 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
class Qwen2Attention(nn.Module):
|
| 236 |
+
"""
|
| 237 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
| 238 |
+
and "Generating Long Sequences with Sparse Transformers".
|
| 239 |
+
"""
|
| 240 |
+
|
| 241 |
+
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
|
| 242 |
+
super().__init__()
|
| 243 |
+
self.config = config
|
| 244 |
+
self.layer_idx = layer_idx
|
| 245 |
+
if layer_idx is None:
|
| 246 |
+
logger.warning_once(
|
| 247 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
| 248 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
| 249 |
+
"when creating this class."
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
self.hidden_size = config.hidden_size
|
| 253 |
+
self.num_heads = config.num_attention_heads
|
| 254 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 255 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 256 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 257 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 258 |
+
self.rope_theta = config.rope_theta
|
| 259 |
+
self.is_causal = True
|
| 260 |
+
self.attention_dropout = config.attention_dropout
|
| 261 |
+
|
| 262 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 263 |
+
raise ValueError(
|
| 264 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 265 |
+
f" and `num_heads`: {self.num_heads})."
|
| 266 |
+
)
|
| 267 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
| 268 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 269 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 270 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 271 |
+
|
| 272 |
+
self.rotary_emb = Qwen2RotaryEmbedding(config=self.config)
|
| 273 |
+
|
| 274 |
+
def forward(
|
| 275 |
+
self,
|
| 276 |
+
hidden_states: torch.Tensor,
|
| 277 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 278 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 279 |
+
past_key_value: Optional[Cache] = None,
|
| 280 |
+
output_attentions: bool = False,
|
| 281 |
+
use_cache: bool = False,
|
| 282 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 283 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 284 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 285 |
+
bsz, q_len, _ = hidden_states.size()
|
| 286 |
+
|
| 287 |
+
query_states = self.q_proj(hidden_states)
|
| 288 |
+
key_states = self.k_proj(hidden_states)
|
| 289 |
+
value_states = self.v_proj(hidden_states)
|
| 290 |
+
|
| 291 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 292 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 293 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 294 |
+
|
| 295 |
+
if position_embeddings is None:
|
| 296 |
+
logger.warning_once(
|
| 297 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 298 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 299 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 300 |
+
"removed and `position_embeddings` will be mandatory."
|
| 301 |
+
)
|
| 302 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 303 |
+
else:
|
| 304 |
+
cos, sin = position_embeddings
|
| 305 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 306 |
+
|
| 307 |
+
if past_key_value is not None:
|
| 308 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 309 |
+
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 310 |
+
# key_states, value_states = past_key_value.cat(key_states, value_states, self.layer_idx)
|
| 311 |
+
past_key, past_value = past_key_value[self.layer_idx]
|
| 312 |
+
key_states = past_key.cat(key_states)
|
| 313 |
+
value_states = past_value.cat(value_states)
|
| 314 |
+
past_key_value = None
|
| 315 |
+
|
| 316 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 317 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 318 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 319 |
+
|
| 320 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 321 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 322 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 323 |
+
attn_weights = attn_weights + causal_mask
|
| 324 |
+
|
| 325 |
+
# upcast attention to fp32
|
| 326 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 327 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 328 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 329 |
+
|
| 330 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 331 |
+
raise ValueError(
|
| 332 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 333 |
+
f" {attn_output.size()}"
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 337 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 338 |
+
|
| 339 |
+
attn_output = self.o_proj(attn_output)
|
| 340 |
+
|
| 341 |
+
if not output_attentions:
|
| 342 |
+
attn_weights = None
|
| 343 |
+
|
| 344 |
+
return attn_output, attn_weights, past_key_value
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
class Qwen2FlashAttention2(Qwen2Attention):
|
| 348 |
+
"""
|
| 349 |
+
Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
|
| 350 |
+
as the weights of the module stays untouched. The only required change would be on the forward pass
|
| 351 |
+
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
| 352 |
+
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
| 353 |
+
config.max_window_layers layers.
|
| 354 |
+
"""
|
| 355 |
+
|
| 356 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
| 357 |
+
def __init__(self, *args, **kwargs):
|
| 358 |
+
super().__init__(*args, **kwargs)
|
| 359 |
+
|
| 360 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 361 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 362 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 363 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 364 |
+
|
| 365 |
+
def forward(
|
| 366 |
+
self,
|
| 367 |
+
hidden_states: torch.Tensor,
|
| 368 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 369 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 370 |
+
past_key_value: Optional[Cache] = None,
|
| 371 |
+
output_attentions: bool = False,
|
| 372 |
+
use_cache: bool = False,
|
| 373 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 374 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 375 |
+
):
|
| 376 |
+
bsz, q_len, _ = hidden_states.size()
|
| 377 |
+
|
| 378 |
+
query_states = self.q_proj(hidden_states)
|
| 379 |
+
key_states = self.k_proj(hidden_states)
|
| 380 |
+
value_states = self.v_proj(hidden_states)
|
| 381 |
+
|
| 382 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 383 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 384 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 385 |
+
|
| 386 |
+
if position_embeddings is None:
|
| 387 |
+
logger.warning_once(
|
| 388 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 389 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 390 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 391 |
+
"removed and `position_embeddings` will be mandatory."
|
| 392 |
+
)
|
| 393 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 394 |
+
else:
|
| 395 |
+
cos, sin = position_embeddings
|
| 396 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 397 |
+
|
| 398 |
+
if past_key_value is not None:
|
| 399 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
| 400 |
+
cache_has_contents = past_key_value.get_seq_length[self.layer_idx][0].current_length.item() > 0
|
| 401 |
+
kv_seq_len = key_states.shape[-2] + cache_position[0]
|
| 402 |
+
if (
|
| 403 |
+
getattr(self.config, "sliding_window", None) is not None
|
| 404 |
+
and kv_seq_len > self.config.sliding_window
|
| 405 |
+
and cache_has_contents
|
| 406 |
+
):
|
| 407 |
+
slicing_tokens = 1 - self.config.sliding_window
|
| 408 |
+
|
| 409 |
+
past_key = past_key_value[self.layer_idx][0]
|
| 410 |
+
past_value = past_key_value[self.layer_idx][1]
|
| 411 |
+
|
| 412 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
| 413 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
| 414 |
+
|
| 415 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
| 416 |
+
raise ValueError(
|
| 417 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
| 418 |
+
f" {past_key.shape}"
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
if attention_mask is not None:
|
| 422 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
| 423 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
| 424 |
+
|
| 425 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 426 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 427 |
+
|
| 428 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 429 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 430 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 431 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
| 432 |
+
|
| 433 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 434 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 435 |
+
# cast them back in float16 just to be sure everything works as expected.
|
| 436 |
+
input_dtype = query_states.dtype
|
| 437 |
+
if input_dtype == torch.float32:
|
| 438 |
+
if torch.is_autocast_enabled():
|
| 439 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 440 |
+
# Handle the case where the model is quantized
|
| 441 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 442 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 443 |
+
else:
|
| 444 |
+
target_dtype = self.q_proj.weight.dtype
|
| 445 |
+
|
| 446 |
+
logger.warning_once(
|
| 447 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 448 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 449 |
+
f" {target_dtype}."
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
query_states = query_states.to(target_dtype)
|
| 453 |
+
key_states = key_states.to(target_dtype)
|
| 454 |
+
value_states = value_states.to(target_dtype)
|
| 455 |
+
|
| 456 |
+
# Reashape to the expected shape for Flash Attention
|
| 457 |
+
query_states = query_states.transpose(1, 2)
|
| 458 |
+
key_states = key_states.transpose(1, 2)
|
| 459 |
+
value_states = value_states.transpose(1, 2)
|
| 460 |
+
|
| 461 |
+
if (
|
| 462 |
+
self.config.use_sliding_window
|
| 463 |
+
and getattr(self.config, "sliding_window", None) is not None
|
| 464 |
+
and self.layer_idx >= self.config.max_window_layers
|
| 465 |
+
):
|
| 466 |
+
sliding_window = self.config.sliding_window
|
| 467 |
+
else:
|
| 468 |
+
sliding_window = None
|
| 469 |
+
|
| 470 |
+
attn_output = _flash_attention_forward(
|
| 471 |
+
query_states,
|
| 472 |
+
key_states,
|
| 473 |
+
value_states,
|
| 474 |
+
attention_mask,
|
| 475 |
+
q_len,
|
| 476 |
+
position_ids=position_ids,
|
| 477 |
+
dropout=dropout_rate,
|
| 478 |
+
sliding_window=sliding_window,
|
| 479 |
+
is_causal=self.is_causal,
|
| 480 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 484 |
+
attn_output = self.o_proj(attn_output)
|
| 485 |
+
|
| 486 |
+
if not output_attentions:
|
| 487 |
+
attn_weights = None
|
| 488 |
+
|
| 489 |
+
return attn_output, attn_weights, past_key_value
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
class Qwen2SdpaAttention(Qwen2Attention):
|
| 493 |
+
"""
|
| 494 |
+
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 495 |
+
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 496 |
+
SDPA API.
|
| 497 |
+
"""
|
| 498 |
+
|
| 499 |
+
# Adapted from Qwen2Attention.forward
|
| 500 |
+
def forward(
|
| 501 |
+
self,
|
| 502 |
+
hidden_states: torch.Tensor,
|
| 503 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 504 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 505 |
+
past_key_value: Optional[Cache] = None,
|
| 506 |
+
output_attentions: bool = False,
|
| 507 |
+
use_cache: bool = False,
|
| 508 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 509 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 510 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 511 |
+
if output_attentions:
|
| 512 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 513 |
+
logger.warning_once(
|
| 514 |
+
"Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 515 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 516 |
+
)
|
| 517 |
+
return super().forward(
|
| 518 |
+
hidden_states=hidden_states,
|
| 519 |
+
attention_mask=attention_mask,
|
| 520 |
+
position_ids=position_ids,
|
| 521 |
+
past_key_value=past_key_value,
|
| 522 |
+
output_attentions=output_attentions,
|
| 523 |
+
use_cache=use_cache,
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
bsz, q_len, _ = hidden_states.size()
|
| 527 |
+
|
| 528 |
+
query_states = self.q_proj(hidden_states)
|
| 529 |
+
key_states = self.k_proj(hidden_states)
|
| 530 |
+
value_states = self.v_proj(hidden_states)
|
| 531 |
+
|
| 532 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 533 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 534 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 535 |
+
|
| 536 |
+
if position_embeddings is None:
|
| 537 |
+
logger.warning_once(
|
| 538 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 539 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 540 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 541 |
+
"removed and `position_embeddings` will be mandatory."
|
| 542 |
+
)
|
| 543 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 544 |
+
else:
|
| 545 |
+
cos, sin = position_embeddings
|
| 546 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 547 |
+
|
| 548 |
+
if past_key_value is not None:
|
| 549 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 550 |
+
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 551 |
+
# key_states, value_states = past_key_value.cat(key_states, value_states, self.layer_idx)
|
| 552 |
+
past_key, past_value = past_key_value[self.layer_idx]
|
| 553 |
+
key_states = past_key.cat(key_states)
|
| 554 |
+
value_states = past_value.cat(value_states)
|
| 555 |
+
past_key_value = None
|
| 556 |
+
|
| 557 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 558 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 559 |
+
|
| 560 |
+
causal_mask = attention_mask
|
| 561 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 562 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 563 |
+
|
| 564 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 565 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 566 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
| 567 |
+
query_states = query_states.contiguous()
|
| 568 |
+
key_states = key_states.contiguous()
|
| 569 |
+
value_states = value_states.contiguous()
|
| 570 |
+
|
| 571 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 572 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 573 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
| 574 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
| 575 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 576 |
+
query_states,
|
| 577 |
+
key_states,
|
| 578 |
+
value_states,
|
| 579 |
+
attn_mask=causal_mask,
|
| 580 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 581 |
+
is_causal=is_causal,
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 585 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
| 586 |
+
|
| 587 |
+
attn_output = self.o_proj(attn_output)
|
| 588 |
+
|
| 589 |
+
return attn_output, None, past_key_value
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
QWEN2_ATTENTION_CLASSES = {
|
| 593 |
+
"eager": Qwen2Attention,
|
| 594 |
+
"flash_attention_2": Qwen2FlashAttention2,
|
| 595 |
+
"sdpa": Qwen2SdpaAttention,
|
| 596 |
+
}
|
| 597 |
+
|
| 598 |
+
|
| 599 |
+
class Qwen2DecoderLayer(nn.Module):
|
| 600 |
+
def __init__(self, config: Qwen2Config, layer_idx: int):
|
| 601 |
+
super().__init__()
|
| 602 |
+
self.hidden_size = config.hidden_size
|
| 603 |
+
|
| 604 |
+
if config.sliding_window and config._attn_implementation != "flash_attention_2":
|
| 605 |
+
logger.warning_once(
|
| 606 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
| 607 |
+
"unexpected results may be encountered."
|
| 608 |
+
)
|
| 609 |
+
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
| 610 |
+
# self.self_attn = QWEN2_ATTENTION_CLASSES["eager"](config, layer_idx)
|
| 611 |
+
|
| 612 |
+
self.mlp = Qwen2MLP(config)
|
| 613 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 614 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 615 |
+
|
| 616 |
+
def forward(
|
| 617 |
+
self,
|
| 618 |
+
hidden_states: torch.Tensor,
|
| 619 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 620 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 621 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 622 |
+
output_attentions: Optional[bool] = False,
|
| 623 |
+
use_cache: Optional[bool] = False,
|
| 624 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 625 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 626 |
+
**kwargs,
|
| 627 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 628 |
+
"""
|
| 629 |
+
Args:
|
| 630 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 631 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 632 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
| 633 |
+
output_attentions (`bool`, *optional*):
|
| 634 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 635 |
+
returned tensors for more detail.
|
| 636 |
+
use_cache (`bool`, *optional*):
|
| 637 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 638 |
+
(see `past_key_values`).
|
| 639 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 640 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 641 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 642 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 643 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 644 |
+
with `head_dim` being the embedding dimension of each attention head.
|
| 645 |
+
kwargs (`dict`, *optional*):
|
| 646 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 647 |
+
into the model
|
| 648 |
+
"""
|
| 649 |
+
|
| 650 |
+
residual = hidden_states
|
| 651 |
+
|
| 652 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 653 |
+
|
| 654 |
+
# Self Attention
|
| 655 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 656 |
+
hidden_states=hidden_states,
|
| 657 |
+
attention_mask=attention_mask,
|
| 658 |
+
position_ids=position_ids,
|
| 659 |
+
past_key_value=past_key_value,
|
| 660 |
+
output_attentions=output_attentions,
|
| 661 |
+
use_cache=use_cache,
|
| 662 |
+
cache_position=cache_position,
|
| 663 |
+
position_embeddings=position_embeddings,
|
| 664 |
+
)
|
| 665 |
+
hidden_states = residual + hidden_states
|
| 666 |
+
|
| 667 |
+
# Fully Connected
|
| 668 |
+
residual = hidden_states
|
| 669 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 670 |
+
hidden_states = self.mlp(hidden_states)
|
| 671 |
+
hidden_states = residual + hidden_states
|
| 672 |
+
|
| 673 |
+
outputs = (hidden_states,)
|
| 674 |
+
|
| 675 |
+
if output_attentions:
|
| 676 |
+
outputs += (self_attn_weights,)
|
| 677 |
+
|
| 678 |
+
if use_cache:
|
| 679 |
+
outputs += (present_key_value,)
|
| 680 |
+
|
| 681 |
+
return outputs
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
QWEN2_START_DOCSTRING = r"""
|
| 685 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 686 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 687 |
+
etc.)
|
| 688 |
+
|
| 689 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 690 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 691 |
+
and behavior.
|
| 692 |
+
|
| 693 |
+
Parameters:
|
| 694 |
+
config ([`Qwen2Config`]):
|
| 695 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 696 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 697 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 698 |
+
"""
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
@add_start_docstrings(
|
| 702 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
| 703 |
+
QWEN2_START_DOCSTRING,
|
| 704 |
+
)
|
| 705 |
+
class Qwen2PreTrainedModel(PreTrainedModel):
|
| 706 |
+
config_class = Qwen2Config
|
| 707 |
+
base_model_prefix = "model"
|
| 708 |
+
supports_gradient_checkpointing = True
|
| 709 |
+
_no_split_modules = ["Qwen2DecoderLayer"]
|
| 710 |
+
_skip_keys_device_placement = "past_key_values"
|
| 711 |
+
_supports_flash_attn_2 = True
|
| 712 |
+
_supports_sdpa = True
|
| 713 |
+
_supports_cache_class = True
|
| 714 |
+
_supports_quantized_cache = True
|
| 715 |
+
_supports_static_cache = True
|
| 716 |
+
|
| 717 |
+
def _init_weights(self, module):
|
| 718 |
+
std = self.config.initializer_range
|
| 719 |
+
if isinstance(module, nn.Linear):
|
| 720 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 721 |
+
if module.bias is not None:
|
| 722 |
+
module.bias.data.zero_()
|
| 723 |
+
elif isinstance(module, nn.Embedding):
|
| 724 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 725 |
+
if module.padding_idx is not None:
|
| 726 |
+
module.weight.data[module.padding_idx].zero_()
|
| 727 |
+
|
| 728 |
+
|
| 729 |
+
QWEN2_INPUTS_DOCSTRING = r"""
|
| 730 |
+
Args:
|
| 731 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 732 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 733 |
+
it.
|
| 734 |
+
|
| 735 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 736 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 737 |
+
|
| 738 |
+
[What are input IDs?](../glossary#input-ids)
|
| 739 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 740 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 741 |
+
|
| 742 |
+
- 1 for tokens that are **not masked**,
|
| 743 |
+
- 0 for tokens that are **masked**.
|
| 744 |
+
|
| 745 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 746 |
+
|
| 747 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 748 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 749 |
+
|
| 750 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 751 |
+
`past_key_values`).
|
| 752 |
+
|
| 753 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 754 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 755 |
+
information on the default strategy.
|
| 756 |
+
|
| 757 |
+
- 1 indicates the head is **not masked**,
|
| 758 |
+
- 0 indicates the head is **masked**.
|
| 759 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 760 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 761 |
+
config.n_positions - 1]`.
|
| 762 |
+
|
| 763 |
+
[What are position IDs?](../glossary#position-ids)
|
| 764 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 765 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 766 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 767 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 768 |
+
|
| 769 |
+
Two formats are allowed:
|
| 770 |
+
- a [`~cache_utils.Cache`] instance, see our
|
| 771 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
| 772 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 773 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 774 |
+
cache format.
|
| 775 |
+
|
| 776 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 777 |
+
legacy cache format will be returned.
|
| 778 |
+
|
| 779 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 780 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 781 |
+
of shape `(batch_size, sequence_length)`.
|
| 782 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 783 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 784 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 785 |
+
model's internal embedding lookup matrix.
|
| 786 |
+
use_cache (`bool`, *optional*):
|
| 787 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 788 |
+
`past_key_values`).
|
| 789 |
+
output_attentions (`bool`, *optional*):
|
| 790 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 791 |
+
tensors for more detail.
|
| 792 |
+
output_hidden_states (`bool`, *optional*):
|
| 793 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 794 |
+
more detail.
|
| 795 |
+
return_dict (`bool`, *optional*):
|
| 796 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 797 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 798 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 799 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 800 |
+
the complete sequence length.
|
| 801 |
+
"""
|
| 802 |
+
|
| 803 |
+
|
| 804 |
+
@add_start_docstrings(
|
| 805 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
| 806 |
+
QWEN2_START_DOCSTRING,
|
| 807 |
+
)
|
| 808 |
+
class Qwen2Model(Qwen2PreTrainedModel):
|
| 809 |
+
"""
|
| 810 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
| 811 |
+
|
| 812 |
+
Args:
|
| 813 |
+
config: Qwen2Config
|
| 814 |
+
"""
|
| 815 |
+
|
| 816 |
+
def __init__(self, config: Qwen2Config):
|
| 817 |
+
super().__init__(config)
|
| 818 |
+
self.padding_idx = config.pad_token_id
|
| 819 |
+
self.vocab_size = config.vocab_size
|
| 820 |
+
|
| 821 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 822 |
+
self.layers = nn.ModuleList(
|
| 823 |
+
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 824 |
+
)
|
| 825 |
+
self._attn_implementation = config._attn_implementation
|
| 826 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 827 |
+
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
| 828 |
+
|
| 829 |
+
self.gradient_checkpointing = False
|
| 830 |
+
# Initialize weights and apply final processing
|
| 831 |
+
self.post_init()
|
| 832 |
+
|
| 833 |
+
def get_input_embeddings(self):
|
| 834 |
+
return self.embed_tokens
|
| 835 |
+
|
| 836 |
+
def set_input_embeddings(self, value):
|
| 837 |
+
self.embed_tokens = value
|
| 838 |
+
|
| 839 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
| 840 |
+
def forward(
|
| 841 |
+
self,
|
| 842 |
+
input_ids: torch.LongTensor = None,
|
| 843 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 844 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 845 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 846 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 847 |
+
use_cache: Optional[bool] = None,
|
| 848 |
+
output_attentions: Optional[bool] = None,
|
| 849 |
+
output_hidden_states: Optional[bool] = None,
|
| 850 |
+
return_dict: Optional[bool] = None,
|
| 851 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 852 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 853 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 854 |
+
output_hidden_states = (
|
| 855 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 856 |
+
)
|
| 857 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 858 |
+
|
| 859 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 860 |
+
|
| 861 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 862 |
+
raise ValueError(
|
| 863 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 864 |
+
)
|
| 865 |
+
|
| 866 |
+
if self.gradient_checkpointing and self.training:
|
| 867 |
+
if use_cache:
|
| 868 |
+
logger.warning_once(
|
| 869 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 870 |
+
)
|
| 871 |
+
use_cache = False
|
| 872 |
+
|
| 873 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
| 874 |
+
return_legacy_cache = False
|
| 875 |
+
# if use_cache and not isinstance(past_key_values, Cache):
|
| 876 |
+
# return_legacy_cache = True
|
| 877 |
+
# if past_key_values is None:
|
| 878 |
+
# past_key_values = DynamicCache()
|
| 879 |
+
# else:
|
| 880 |
+
# past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 881 |
+
# logger.warning_once(
|
| 882 |
+
# "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
| 883 |
+
# "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
| 884 |
+
# "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
| 885 |
+
# )
|
| 886 |
+
|
| 887 |
+
if inputs_embeds is None:
|
| 888 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 889 |
+
|
| 890 |
+
if cache_position is None:
|
| 891 |
+
past_seen_tokens = past_key_values[0][0].current_length.item() if past_key_values is not None else 0
|
| 892 |
+
cache_position = torch.arange(
|
| 893 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 894 |
+
)
|
| 895 |
+
|
| 896 |
+
if position_ids is None:
|
| 897 |
+
position_ids = cache_position.unsqueeze(0)
|
| 898 |
+
causal_mask = self._update_causal_mask(
|
| 899 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 900 |
+
)
|
| 901 |
+
|
| 902 |
+
hidden_states = inputs_embeds
|
| 903 |
+
|
| 904 |
+
# create position embeddings to be shared across the decoder layers
|
| 905 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 906 |
+
|
| 907 |
+
# decoder layers
|
| 908 |
+
all_hidden_states = () if output_hidden_states else None
|
| 909 |
+
all_self_attns = () if output_attentions else None
|
| 910 |
+
next_decoder_cache = None
|
| 911 |
+
|
| 912 |
+
for decoder_layer in self.layers:
|
| 913 |
+
if output_hidden_states:
|
| 914 |
+
all_hidden_states += (hidden_states,)
|
| 915 |
+
|
| 916 |
+
if self.gradient_checkpointing and self.training:
|
| 917 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 918 |
+
decoder_layer.__call__,
|
| 919 |
+
hidden_states,
|
| 920 |
+
causal_mask,
|
| 921 |
+
position_ids,
|
| 922 |
+
past_key_values,
|
| 923 |
+
output_attentions,
|
| 924 |
+
use_cache,
|
| 925 |
+
cache_position,
|
| 926 |
+
position_embeddings,
|
| 927 |
+
)
|
| 928 |
+
else:
|
| 929 |
+
layer_outputs = decoder_layer(
|
| 930 |
+
hidden_states,
|
| 931 |
+
attention_mask=causal_mask,
|
| 932 |
+
position_ids=position_ids,
|
| 933 |
+
past_key_value=past_key_values,
|
| 934 |
+
output_attentions=output_attentions,
|
| 935 |
+
use_cache=use_cache,
|
| 936 |
+
cache_position=cache_position,
|
| 937 |
+
position_embeddings=position_embeddings,
|
| 938 |
+
)
|
| 939 |
+
|
| 940 |
+
hidden_states = layer_outputs[0]
|
| 941 |
+
|
| 942 |
+
if use_cache:
|
| 943 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 944 |
+
|
| 945 |
+
if output_attentions:
|
| 946 |
+
all_self_attns += (layer_outputs[1],)
|
| 947 |
+
|
| 948 |
+
hidden_states = self.norm(hidden_states)
|
| 949 |
+
|
| 950 |
+
# add hidden states from the last decoder layer
|
| 951 |
+
if output_hidden_states:
|
| 952 |
+
all_hidden_states += (hidden_states,)
|
| 953 |
+
|
| 954 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 955 |
+
if return_legacy_cache:
|
| 956 |
+
next_cache = next_cache.to_legacy_cache()
|
| 957 |
+
|
| 958 |
+
if not return_dict:
|
| 959 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 960 |
+
return BaseModelOutputWithPast(
|
| 961 |
+
last_hidden_state=hidden_states,
|
| 962 |
+
past_key_values=next_cache,
|
| 963 |
+
hidden_states=all_hidden_states,
|
| 964 |
+
attentions=all_self_attns,
|
| 965 |
+
)
|
| 966 |
+
|
| 967 |
+
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
|
| 968 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 969 |
+
self,
|
| 970 |
+
attention_mask: torch.Tensor,
|
| 971 |
+
sequence_length: int,
|
| 972 |
+
target_length: int,
|
| 973 |
+
dtype: torch.dtype,
|
| 974 |
+
device: torch.device,
|
| 975 |
+
min_dtype: float,
|
| 976 |
+
cache_position: torch.Tensor,
|
| 977 |
+
batch_size: int,
|
| 978 |
+
):
|
| 979 |
+
"""
|
| 980 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 981 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 982 |
+
|
| 983 |
+
Args:
|
| 984 |
+
attention_mask (`torch.Tensor`):
|
| 985 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
| 986 |
+
sequence_length (`int`):
|
| 987 |
+
The sequence length being processed.
|
| 988 |
+
target_length (`int`):
|
| 989 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
| 990 |
+
dtype (`torch.dtype`):
|
| 991 |
+
The dtype to use for the 4D attention mask.
|
| 992 |
+
device (`torch.device`):
|
| 993 |
+
The device to plcae the 4D attention mask on.
|
| 994 |
+
min_dtype (`float`):
|
| 995 |
+
The minimum value representable with the dtype `dtype`.
|
| 996 |
+
cache_position (`torch.Tensor`):
|
| 997 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 998 |
+
batch_size (`torch.Tensor`):
|
| 999 |
+
Batch size.
|
| 1000 |
+
"""
|
| 1001 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 1002 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 1003 |
+
causal_mask = attention_mask
|
| 1004 |
+
else:
|
| 1005 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
| 1006 |
+
if sequence_length != 1:
|
| 1007 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 1008 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 1009 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 1010 |
+
if attention_mask is not None:
|
| 1011 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 1012 |
+
mask_length = attention_mask.shape[-1]
|
| 1013 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 1014 |
+
padding_mask = padding_mask == 0
|
| 1015 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 1016 |
+
padding_mask, min_dtype
|
| 1017 |
+
)
|
| 1018 |
+
if hasattr(self, "tree_mask") and self.tree_mask is not None:
|
| 1019 |
+
tree_mask = self.tree_mask
|
| 1020 |
+
tree_len = tree_mask.size(-1)
|
| 1021 |
+
causal_mask[:, :, -tree_len:, -tree_len:][
|
| 1022 |
+
tree_mask == 0
|
| 1023 |
+
] = causal_mask.min()
|
| 1024 |
+
# causal_mask[:, :, -tree_len:, -tree_len:][
|
| 1025 |
+
# tree_mask == 1
|
| 1026 |
+
# ] = 0
|
| 1027 |
+
|
| 1028 |
+
return causal_mask
|
| 1029 |
+
|
| 1030 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
|
| 1031 |
+
def _update_causal_mask(
|
| 1032 |
+
self,
|
| 1033 |
+
attention_mask: torch.Tensor,
|
| 1034 |
+
input_tensor: torch.Tensor,
|
| 1035 |
+
cache_position: torch.Tensor,
|
| 1036 |
+
past_key_values: Cache,
|
| 1037 |
+
output_attentions: bool,
|
| 1038 |
+
):
|
| 1039 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 1040 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 1041 |
+
return attention_mask
|
| 1042 |
+
return None
|
| 1043 |
+
|
| 1044 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 1045 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 1046 |
+
# to infer the attention mask.
|
| 1047 |
+
|
| 1048 |
+
past_seen_tokens = past_key_values[0][0].current_length.item() if past_key_values is not None else 0
|
| 1049 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 1050 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 1051 |
+
|
| 1052 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
| 1053 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 1054 |
+
attention_mask,
|
| 1055 |
+
inputs_embeds=input_tensor,
|
| 1056 |
+
past_key_values_length=past_seen_tokens,
|
| 1057 |
+
is_training=self.training,
|
| 1058 |
+
):
|
| 1059 |
+
return None
|
| 1060 |
+
|
| 1061 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 1062 |
+
min_dtype = torch.finfo(dtype).min
|
| 1063 |
+
sequence_length = input_tensor.shape[1]
|
| 1064 |
+
if using_static_cache:
|
| 1065 |
+
target_length = past_key_values.get_max_length()
|
| 1066 |
+
else:
|
| 1067 |
+
target_length = (
|
| 1068 |
+
attention_mask.shape[-1]
|
| 1069 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 1070 |
+
else past_seen_tokens + sequence_length
|
| 1071 |
+
)
|
| 1072 |
+
|
| 1073 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 1074 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 1075 |
+
attention_mask,
|
| 1076 |
+
sequence_length=sequence_length,
|
| 1077 |
+
target_length=target_length,
|
| 1078 |
+
dtype=dtype,
|
| 1079 |
+
device=device,
|
| 1080 |
+
min_dtype=min_dtype,
|
| 1081 |
+
cache_position=cache_position,
|
| 1082 |
+
batch_size=input_tensor.shape[0],
|
| 1083 |
+
)
|
| 1084 |
+
|
| 1085 |
+
if (
|
| 1086 |
+
self.config._attn_implementation == "sdpa"
|
| 1087 |
+
and attention_mask is not None
|
| 1088 |
+
and attention_mask.device.type == "cuda"
|
| 1089 |
+
and not output_attentions
|
| 1090 |
+
):
|
| 1091 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1092 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1093 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1094 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
| 1095 |
+
|
| 1096 |
+
return causal_mask
|
| 1097 |
+
|
| 1098 |
+
|
| 1099 |
+
class Qwen2ForCausalLM(Qwen2PreTrainedModel, GenerationMixin):
|
| 1100 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1101 |
+
|
| 1102 |
+
def __init__(self, config):
|
| 1103 |
+
super().__init__(config)
|
| 1104 |
+
self.model = Qwen2Model(config)
|
| 1105 |
+
self.vocab_size = config.vocab_size
|
| 1106 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1107 |
+
|
| 1108 |
+
# Initialize weights and apply final processing
|
| 1109 |
+
self.post_init()
|
| 1110 |
+
|
| 1111 |
+
def get_input_embeddings(self):
|
| 1112 |
+
return self.model.embed_tokens
|
| 1113 |
+
|
| 1114 |
+
def set_input_embeddings(self, value):
|
| 1115 |
+
self.model.embed_tokens = value
|
| 1116 |
+
|
| 1117 |
+
def get_output_embeddings(self):
|
| 1118 |
+
return self.lm_head
|
| 1119 |
+
|
| 1120 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1121 |
+
self.lm_head = new_embeddings
|
| 1122 |
+
|
| 1123 |
+
def set_decoder(self, decoder):
|
| 1124 |
+
self.model = decoder
|
| 1125 |
+
|
| 1126 |
+
def get_decoder(self):
|
| 1127 |
+
return self.model
|
| 1128 |
+
|
| 1129 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
| 1130 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1131 |
+
def forward(
|
| 1132 |
+
self,
|
| 1133 |
+
input_ids: torch.LongTensor = None,
|
| 1134 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1135 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1136 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1137 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1138 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1139 |
+
use_cache: Optional[bool] = None,
|
| 1140 |
+
output_attentions: Optional[bool] = None,
|
| 1141 |
+
output_hidden_states: Optional[bool] = None,
|
| 1142 |
+
return_dict: Optional[bool] = None,
|
| 1143 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1144 |
+
num_logits_to_keep: int = 0,
|
| 1145 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1146 |
+
r"""
|
| 1147 |
+
Args:
|
| 1148 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1149 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1150 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1151 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1152 |
+
|
| 1153 |
+
num_logits_to_keep (`int`, *optional*):
|
| 1154 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
| 1155 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
| 1156 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 1157 |
+
|
| 1158 |
+
Returns:
|
| 1159 |
+
|
| 1160 |
+
Example:
|
| 1161 |
+
|
| 1162 |
+
```python
|
| 1163 |
+
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM
|
| 1164 |
+
|
| 1165 |
+
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 1166 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 1167 |
+
|
| 1168 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1169 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1170 |
+
|
| 1171 |
+
>>> # Generate
|
| 1172 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1173 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1174 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1175 |
+
```"""
|
| 1176 |
+
|
| 1177 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1178 |
+
output_hidden_states = (
|
| 1179 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1180 |
+
)
|
| 1181 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1182 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1183 |
+
outputs = self.model(
|
| 1184 |
+
input_ids=input_ids,
|
| 1185 |
+
attention_mask=attention_mask,
|
| 1186 |
+
position_ids=position_ids,
|
| 1187 |
+
past_key_values=past_key_values,
|
| 1188 |
+
inputs_embeds=inputs_embeds,
|
| 1189 |
+
use_cache=use_cache,
|
| 1190 |
+
output_attentions=output_attentions,
|
| 1191 |
+
output_hidden_states=output_hidden_states,
|
| 1192 |
+
return_dict=return_dict,
|
| 1193 |
+
cache_position=cache_position,
|
| 1194 |
+
)
|
| 1195 |
+
|
| 1196 |
+
hidden_states = outputs[0]
|
| 1197 |
+
if labels is None and not is_torchdynamo_compiling():
|
| 1198 |
+
logger.warning_once(
|
| 1199 |
+
"Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)"
|
| 1200 |
+
)
|
| 1201 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 1202 |
+
# TODO: remove the float() operation in v4.46
|
| 1203 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]).float()
|
| 1204 |
+
|
| 1205 |
+
loss = None
|
| 1206 |
+
if labels is not None:
|
| 1207 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
| 1208 |
+
logits = logits.float()
|
| 1209 |
+
# Shift so that tokens < n predict n
|
| 1210 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1211 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1212 |
+
# Flatten the tokens
|
| 1213 |
+
loss_fct = CrossEntropyLoss()
|
| 1214 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1215 |
+
shift_labels = shift_labels.view(-1)
|
| 1216 |
+
# Enable model parallelism
|
| 1217 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1218 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1219 |
+
|
| 1220 |
+
if not return_dict:
|
| 1221 |
+
output = (logits,) + outputs[1:]
|
| 1222 |
+
return (loss,) + output if loss is not None else output
|
| 1223 |
+
|
| 1224 |
+
return CausalLMOutputWithPast(
|
| 1225 |
+
loss=loss,
|
| 1226 |
+
logits=logits,
|
| 1227 |
+
past_key_values=outputs.past_key_values,
|
| 1228 |
+
hidden_states=outputs.hidden_states,
|
| 1229 |
+
attentions=outputs.attentions,
|
| 1230 |
+
)
|
| 1231 |
+
|
| 1232 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
|
| 1233 |
+
def prepare_inputs_for_generation(
|
| 1234 |
+
self,
|
| 1235 |
+
input_ids,
|
| 1236 |
+
past_key_values=None,
|
| 1237 |
+
attention_mask=None,
|
| 1238 |
+
inputs_embeds=None,
|
| 1239 |
+
cache_position=None,
|
| 1240 |
+
position_ids=None,
|
| 1241 |
+
use_cache=True,
|
| 1242 |
+
num_logits_to_keep=None,
|
| 1243 |
+
**kwargs,
|
| 1244 |
+
):
|
| 1245 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
| 1246 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
| 1247 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
| 1248 |
+
if past_key_values is not None:
|
| 1249 |
+
if inputs_embeds is not None: # Exception 1
|
| 1250 |
+
input_ids = input_ids[:, -cache_position.shape[0]:]
|
| 1251 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
| 1252 |
+
input_ids = input_ids[:, cache_position]
|
| 1253 |
+
|
| 1254 |
+
if attention_mask is not None and position_ids is None:
|
| 1255 |
+
# create position_ids on the fly for batch generation
|
| 1256 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1257 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1258 |
+
if past_key_values:
|
| 1259 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
| 1260 |
+
|
| 1261 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
| 1262 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
| 1263 |
+
|
| 1264 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1265 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
| 1266 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
| 1267 |
+
else:
|
| 1268 |
+
# The clone here is for the same reason as for `position_ids`.
|
| 1269 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
| 1270 |
+
|
| 1271 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
| 1272 |
+
if model_inputs["inputs_embeds"] is not None:
|
| 1273 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
| 1274 |
+
device = model_inputs["inputs_embeds"].device
|
| 1275 |
+
else:
|
| 1276 |
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
| 1277 |
+
device = model_inputs["input_ids"].device
|
| 1278 |
+
|
| 1279 |
+
dtype = self.lm_head.weight.dtype
|
| 1280 |
+
min_dtype = torch.finfo(dtype).min
|
| 1281 |
+
|
| 1282 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1283 |
+
attention_mask,
|
| 1284 |
+
sequence_length=sequence_length,
|
| 1285 |
+
target_length=past_key_values.get_max_length(),
|
| 1286 |
+
dtype=dtype,
|
| 1287 |
+
device=device,
|
| 1288 |
+
min_dtype=min_dtype,
|
| 1289 |
+
cache_position=cache_position,
|
| 1290 |
+
batch_size=batch_size,
|
| 1291 |
+
)
|
| 1292 |
+
|
| 1293 |
+
if num_logits_to_keep is not None:
|
| 1294 |
+
model_inputs["num_logits_to_keep"] = num_logits_to_keep
|
| 1295 |
+
|
| 1296 |
+
model_inputs.update(
|
| 1297 |
+
{
|
| 1298 |
+
"position_ids": position_ids,
|
| 1299 |
+
"cache_position": cache_position,
|
| 1300 |
+
"past_key_values": past_key_values,
|
| 1301 |
+
"use_cache": use_cache,
|
| 1302 |
+
"attention_mask": attention_mask,
|
| 1303 |
+
}
|
| 1304 |
+
)
|
| 1305 |
+
return model_inputs
|
| 1306 |
+
|
| 1307 |
+
|
| 1308 |
+
@add_start_docstrings(
|
| 1309 |
+
"""
|
| 1310 |
+
The Qwen2 Model transformer with a sequence classification head on top (linear layer).
|
| 1311 |
+
|
| 1312 |
+
[`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1313 |
+
(e.g. GPT-2) do.
|
| 1314 |
+
|
| 1315 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1316 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1317 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1318 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1319 |
+
each row of the batch).
|
| 1320 |
+
""",
|
| 1321 |
+
QWEN2_START_DOCSTRING,
|
| 1322 |
+
)
|
| 1323 |
+
class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
|
| 1324 |
+
def __init__(self, config):
|
| 1325 |
+
super().__init__(config)
|
| 1326 |
+
self.num_labels = config.num_labels
|
| 1327 |
+
self.model = Qwen2Model(config)
|
| 1328 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1329 |
+
|
| 1330 |
+
# Initialize weights and apply final processing
|
| 1331 |
+
self.post_init()
|
| 1332 |
+
|
| 1333 |
+
def get_input_embeddings(self):
|
| 1334 |
+
return self.model.embed_tokens
|
| 1335 |
+
|
| 1336 |
+
def set_input_embeddings(self, value):
|
| 1337 |
+
self.model.embed_tokens = value
|
| 1338 |
+
|
| 1339 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
| 1340 |
+
def forward(
|
| 1341 |
+
self,
|
| 1342 |
+
input_ids: torch.LongTensor = None,
|
| 1343 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1344 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1345 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1346 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1347 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1348 |
+
use_cache: Optional[bool] = None,
|
| 1349 |
+
output_attentions: Optional[bool] = None,
|
| 1350 |
+
output_hidden_states: Optional[bool] = None,
|
| 1351 |
+
return_dict: Optional[bool] = None,
|
| 1352 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1353 |
+
r"""
|
| 1354 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1355 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1356 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1357 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1358 |
+
"""
|
| 1359 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1360 |
+
|
| 1361 |
+
transformer_outputs = self.model(
|
| 1362 |
+
input_ids,
|
| 1363 |
+
attention_mask=attention_mask,
|
| 1364 |
+
position_ids=position_ids,
|
| 1365 |
+
past_key_values=past_key_values,
|
| 1366 |
+
inputs_embeds=inputs_embeds,
|
| 1367 |
+
use_cache=use_cache,
|
| 1368 |
+
output_attentions=output_attentions,
|
| 1369 |
+
output_hidden_states=output_hidden_states,
|
| 1370 |
+
return_dict=return_dict,
|
| 1371 |
+
)
|
| 1372 |
+
hidden_states = transformer_outputs[0]
|
| 1373 |
+
logits = self.score(hidden_states)
|
| 1374 |
+
|
| 1375 |
+
if input_ids is not None:
|
| 1376 |
+
batch_size = input_ids.shape[0]
|
| 1377 |
+
else:
|
| 1378 |
+
batch_size = inputs_embeds.shape[0]
|
| 1379 |
+
|
| 1380 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1381 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 1382 |
+
if self.config.pad_token_id is None:
|
| 1383 |
+
sequence_lengths = -1
|
| 1384 |
+
else:
|
| 1385 |
+
if input_ids is not None:
|
| 1386 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1387 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1388 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1389 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1390 |
+
else:
|
| 1391 |
+
sequence_lengths = -1
|
| 1392 |
+
|
| 1393 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1394 |
+
|
| 1395 |
+
loss = None
|
| 1396 |
+
if labels is not None:
|
| 1397 |
+
labels = labels.to(logits.device)
|
| 1398 |
+
if self.config.problem_type is None:
|
| 1399 |
+
if self.num_labels == 1:
|
| 1400 |
+
self.config.problem_type = "regression"
|
| 1401 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1402 |
+
self.config.problem_type = "single_label_classification"
|
| 1403 |
+
else:
|
| 1404 |
+
self.config.problem_type = "multi_label_classification"
|
| 1405 |
+
|
| 1406 |
+
if self.config.problem_type == "regression":
|
| 1407 |
+
loss_fct = MSELoss()
|
| 1408 |
+
if self.num_labels == 1:
|
| 1409 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1410 |
+
else:
|
| 1411 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1412 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1413 |
+
loss_fct = CrossEntropyLoss()
|
| 1414 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1415 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1416 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1417 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1418 |
+
if not return_dict:
|
| 1419 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1420 |
+
return ((loss,) + output) if loss is not None else output
|
| 1421 |
+
|
| 1422 |
+
return SequenceClassifierOutputWithPast(
|
| 1423 |
+
loss=loss,
|
| 1424 |
+
logits=pooled_logits,
|
| 1425 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1426 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1427 |
+
attentions=transformer_outputs.attentions,
|
| 1428 |
+
)
|
| 1429 |
+
|
| 1430 |
+
|
| 1431 |
+
@add_start_docstrings(
|
| 1432 |
+
"""
|
| 1433 |
+
The Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
| 1434 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
| 1435 |
+
""",
|
| 1436 |
+
QWEN2_START_DOCSTRING,
|
| 1437 |
+
)
|
| 1438 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Qwen2, LLAMA->QWEN2
|
| 1439 |
+
class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
|
| 1440 |
+
def __init__(self, config):
|
| 1441 |
+
super().__init__(config)
|
| 1442 |
+
self.num_labels = config.num_labels
|
| 1443 |
+
self.model = Qwen2Model(config)
|
| 1444 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
| 1445 |
+
classifier_dropout = config.classifier_dropout
|
| 1446 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
| 1447 |
+
classifier_dropout = config.hidden_dropout
|
| 1448 |
+
else:
|
| 1449 |
+
classifier_dropout = 0.1
|
| 1450 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1451 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
| 1452 |
+
|
| 1453 |
+
# Initialize weights and apply final processing
|
| 1454 |
+
self.post_init()
|
| 1455 |
+
|
| 1456 |
+
def get_input_embeddings(self):
|
| 1457 |
+
return self.model.embed_tokens
|
| 1458 |
+
|
| 1459 |
+
def set_input_embeddings(self, value):
|
| 1460 |
+
self.model.embed_tokens = value
|
| 1461 |
+
|
| 1462 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
| 1463 |
+
def forward(
|
| 1464 |
+
self,
|
| 1465 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1466 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1467 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1468 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1469 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1470 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1471 |
+
use_cache: Optional[bool] = None,
|
| 1472 |
+
output_attentions: Optional[bool] = None,
|
| 1473 |
+
output_hidden_states: Optional[bool] = None,
|
| 1474 |
+
return_dict: Optional[bool] = None,
|
| 1475 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
| 1476 |
+
r"""
|
| 1477 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1478 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1479 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1480 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1481 |
+
"""
|
| 1482 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1483 |
+
|
| 1484 |
+
outputs = self.model(
|
| 1485 |
+
input_ids,
|
| 1486 |
+
attention_mask=attention_mask,
|
| 1487 |
+
position_ids=position_ids,
|
| 1488 |
+
past_key_values=past_key_values,
|
| 1489 |
+
inputs_embeds=inputs_embeds,
|
| 1490 |
+
use_cache=use_cache,
|
| 1491 |
+
output_attentions=output_attentions,
|
| 1492 |
+
output_hidden_states=output_hidden_states,
|
| 1493 |
+
return_dict=return_dict,
|
| 1494 |
+
)
|
| 1495 |
+
sequence_output = outputs[0]
|
| 1496 |
+
sequence_output = self.dropout(sequence_output)
|
| 1497 |
+
logits = self.score(sequence_output)
|
| 1498 |
+
|
| 1499 |
+
loss = None
|
| 1500 |
+
if labels is not None:
|
| 1501 |
+
loss_fct = CrossEntropyLoss()
|
| 1502 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1503 |
+
|
| 1504 |
+
if not return_dict:
|
| 1505 |
+
output = (logits,) + outputs[2:]
|
| 1506 |
+
return ((loss,) + output) if loss is not None else output
|
| 1507 |
+
|
| 1508 |
+
return TokenClassifierOutput(
|
| 1509 |
+
loss=loss,
|
| 1510 |
+
logits=logits,
|
| 1511 |
+
hidden_states=outputs.hidden_states,
|
| 1512 |
+
attentions=outputs.attentions,
|
| 1513 |
+
)
|
eagle/model/utils.py
ADDED
|
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
# typing
|
| 5 |
+
from typing import List, Tuple
|
| 6 |
+
import time
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
# TODO
|
| 10 |
+
# from transformers import LlamaTokenizer
|
| 11 |
+
# tokenizer=LlamaTokenizer.from_pretrained("/home/lyh/weights/hf/vicuna_v13/7B/")
|
| 12 |
+
|
| 13 |
+
TOPK = 10 # topk for sparse tree
|
| 14 |
+
|
| 15 |
+
from transformers.generation.logits_process import (
|
| 16 |
+
LogitsProcessorList,
|
| 17 |
+
RepetitionPenaltyLogitsProcessor,
|
| 18 |
+
TemperatureLogitsWarper,
|
| 19 |
+
TopKLogitsWarper,
|
| 20 |
+
TopPLogitsWarper,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class Timer:
|
| 25 |
+
def __init__(self,name):
|
| 26 |
+
self.name = name
|
| 27 |
+
def __enter__(self):
|
| 28 |
+
torch.cuda.synchronize()
|
| 29 |
+
self.start = time.perf_counter()
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
| 33 |
+
torch.cuda.synchronize()
|
| 34 |
+
elapsed = time.perf_counter() - self.start
|
| 35 |
+
print(f'{self.name} took {elapsed} seconds')
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def prepare_logits_processor(
|
| 39 |
+
temperature: float = 0.0,
|
| 40 |
+
repetition_penalty: float = 0.0,
|
| 41 |
+
top_p: float = 0.0,
|
| 42 |
+
top_k: int = 0
|
| 43 |
+
) -> LogitsProcessorList:
|
| 44 |
+
processor_list = LogitsProcessorList()
|
| 45 |
+
if temperature > 1e-5:
|
| 46 |
+
if temperature >= 1e-5 and temperature != 1.0:
|
| 47 |
+
processor_list.append(TemperatureLogitsWarper(temperature))
|
| 48 |
+
if repetition_penalty > 1.0:
|
| 49 |
+
processor_list.append(RepetitionPenaltyLogitsProcessor(repetition_penalty))
|
| 50 |
+
if 1e-8 <= top_p < 1.0:
|
| 51 |
+
processor_list.append(TopPLogitsWarper(top_p))
|
| 52 |
+
if top_k > 0:
|
| 53 |
+
processor_list.append(TopKLogitsWarper(top_k))
|
| 54 |
+
return processor_list
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# test_processor = prepare_logits_processor(
|
| 58 |
+
# 0.0, 0.0, -1, 1
|
| 59 |
+
# )
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def pad_path(path: List[int], length: int, pad_value: int = -2) -> List[int]:
|
| 63 |
+
"""
|
| 64 |
+
Pad the given path list with a specific value up to a specified length.
|
| 65 |
+
|
| 66 |
+
Parameters:
|
| 67 |
+
- path (list): The original list that needs padding.
|
| 68 |
+
- length (int): The desired length of the padded list.
|
| 69 |
+
- pad_value (optional, default=-2): The value to use for padding.
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
- list: A new list based on the original path but padded to the desired length.
|
| 73 |
+
|
| 74 |
+
Example:
|
| 75 |
+
>>> pad_path([1,2,3], 5)
|
| 76 |
+
[1, 2, 3, -2, -2]
|
| 77 |
+
|
| 78 |
+
Note:
|
| 79 |
+
If the given path is already longer than the specified length,
|
| 80 |
+
then no padding occurs, and the original path is returned.
|
| 81 |
+
"""
|
| 82 |
+
|
| 83 |
+
# Calculate the number of padding values needed by subtracting the length
|
| 84 |
+
# of the path from the desired length.
|
| 85 |
+
# Append the padding values to the original path and return the new list.
|
| 86 |
+
return path + [pad_value] * (length - len(path))
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def generate_tree_buffers(tree_choices, device="cuda"):
|
| 90 |
+
def custom_sort(lst):
|
| 91 |
+
# sort_keys=[len(list)]
|
| 92 |
+
sort_keys = []
|
| 93 |
+
for i in range(len(lst)):
|
| 94 |
+
sort_keys.append(lst[i] if lst[i] >= 0 else maxitem)
|
| 95 |
+
return sort_keys
|
| 96 |
+
with Timer("sort"):
|
| 97 |
+
|
| 98 |
+
sorted_tree_choices = sorted(tree_choices, key=lambda x: (len(x), x))
|
| 99 |
+
tree_len = len(sorted_tree_choices) + 1
|
| 100 |
+
|
| 101 |
+
# Initialize depth_counts to keep track of how many choices have a particular depth
|
| 102 |
+
depth_counts = []
|
| 103 |
+
prev_depth = 0
|
| 104 |
+
for path in sorted_tree_choices:
|
| 105 |
+
depth = len(path)
|
| 106 |
+
if depth != prev_depth:
|
| 107 |
+
depth_counts.append(0)
|
| 108 |
+
depth_counts[depth - 1] += 1
|
| 109 |
+
prev_depth = depth
|
| 110 |
+
|
| 111 |
+
tree_attn_mask = torch.eye(tree_len, tree_len)
|
| 112 |
+
tree_attn_mask[:, 0] = 1
|
| 113 |
+
start = 0
|
| 114 |
+
for i in range(len(depth_counts)):
|
| 115 |
+
for j in range(depth_counts[i]):
|
| 116 |
+
cur_tree_choice = sorted_tree_choices[start + j]
|
| 117 |
+
# retrieve ancestor position
|
| 118 |
+
if len(cur_tree_choice) == 1:
|
| 119 |
+
continue
|
| 120 |
+
ancestor_idx = []
|
| 121 |
+
for c in range(len(cur_tree_choice) - 1):
|
| 122 |
+
ancestor_idx.append(sorted_tree_choices.index(cur_tree_choice[:c + 1]) + 1)
|
| 123 |
+
tree_attn_mask[j + start + 1, ancestor_idx] = 1
|
| 124 |
+
start += depth_counts[i]
|
| 125 |
+
|
| 126 |
+
tree_indices = torch.zeros(tree_len, dtype=torch.long)
|
| 127 |
+
p_indices = [0 for _ in range(tree_len - 1)]
|
| 128 |
+
b_indices = [[] for _ in range(tree_len - 1)]
|
| 129 |
+
tree_indices[0] = 0
|
| 130 |
+
start = 0
|
| 131 |
+
bias = 0
|
| 132 |
+
for i in range(len(depth_counts)):
|
| 133 |
+
inlayer_bias = 0
|
| 134 |
+
b = []
|
| 135 |
+
for j in range(depth_counts[i]):
|
| 136 |
+
cur_tree_choice = sorted_tree_choices[start + j]
|
| 137 |
+
cur_parent = cur_tree_choice[:-1]
|
| 138 |
+
if j != 0:
|
| 139 |
+
if cur_parent != parent:
|
| 140 |
+
bias += 1
|
| 141 |
+
inlayer_bias += 1
|
| 142 |
+
parent = cur_parent
|
| 143 |
+
b = []
|
| 144 |
+
else:
|
| 145 |
+
parent = cur_parent
|
| 146 |
+
tree_indices[start + j + 1] = cur_tree_choice[-1] + TOPK * (i + bias) + 1
|
| 147 |
+
p_indices[start + j] = inlayer_bias
|
| 148 |
+
if len(b) > 0:
|
| 149 |
+
b_indices[start + j] = copy.deepcopy(b)
|
| 150 |
+
else:
|
| 151 |
+
b_indices[start + j] = []
|
| 152 |
+
b.append(cur_tree_choice[-1] + TOPK * (i + bias) + 1)
|
| 153 |
+
start += depth_counts[i]
|
| 154 |
+
|
| 155 |
+
p_indices = [-1] + p_indices
|
| 156 |
+
tree_position_ids = torch.zeros(tree_len, dtype=torch.long)
|
| 157 |
+
start = 0
|
| 158 |
+
for i in range(len(depth_counts)):
|
| 159 |
+
tree_position_ids[start + 1: start + depth_counts[i] + 1] = i + 1
|
| 160 |
+
start += depth_counts[i]
|
| 161 |
+
|
| 162 |
+
retrieve_indices_nest = []
|
| 163 |
+
retrieve_paths = []
|
| 164 |
+
for i in range(len(sorted_tree_choices)):
|
| 165 |
+
cur_tree_choice = sorted_tree_choices[-i - 1]
|
| 166 |
+
retrieve_indice = []
|
| 167 |
+
if cur_tree_choice in retrieve_paths:
|
| 168 |
+
continue
|
| 169 |
+
else:
|
| 170 |
+
for c in range(len(cur_tree_choice)):
|
| 171 |
+
retrieve_indice.append(sorted_tree_choices.index(cur_tree_choice[:c + 1]))
|
| 172 |
+
retrieve_paths.append(cur_tree_choice[:c + 1])
|
| 173 |
+
retrieve_indices_nest.append(retrieve_indice)
|
| 174 |
+
max_length = max([len(x) for x in retrieve_indices_nest])
|
| 175 |
+
retrieve_indices = [pad_path(path, max_length) for path in retrieve_indices_nest]
|
| 176 |
+
retrieve_indices = torch.tensor(retrieve_indices, dtype=torch.long)
|
| 177 |
+
retrieve_indices = retrieve_indices + 1
|
| 178 |
+
retrieve_indices = torch.cat([torch.zeros((retrieve_indices.shape[0], 1), dtype=torch.long), retrieve_indices],
|
| 179 |
+
dim=1)
|
| 180 |
+
|
| 181 |
+
maxitem = retrieve_indices.max().item() + 5
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
retrieve_indices = retrieve_indices.tolist()
|
| 186 |
+
retrieve_indices = sorted(retrieve_indices, key=custom_sort)
|
| 187 |
+
retrieve_indices = torch.tensor(retrieve_indices, dtype=torch.long)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
# Aggregate the generated buffers into a dictionary
|
| 192 |
+
tree_buffers = {
|
| 193 |
+
"tree_attn_mask": tree_attn_mask.unsqueeze(0).unsqueeze(0),
|
| 194 |
+
"tree_indices": tree_indices,
|
| 195 |
+
"tree_position_ids": tree_position_ids,
|
| 196 |
+
"retrieve_indices": retrieve_indices,
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
# Move the tensors in the dictionary to the specified device
|
| 200 |
+
tree_buffers = {
|
| 201 |
+
k: v.clone().to(device)
|
| 202 |
+
if isinstance(v, torch.Tensor)
|
| 203 |
+
else torch.tensor(v, device=device)
|
| 204 |
+
for k, v in tree_buffers.items()
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
return tree_buffers
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def initialize_tree0(input_ids, model, past_key_values, logits_processor):
|
| 211 |
+
draft_tokens, retrieve_indices,tree_mask,tree_position_ids, outputs, logits, hidden_state, sample_token = model(
|
| 212 |
+
input_ids, past_key_values=past_key_values, output_orig=True, logits_processor=logits_processor
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
# if logits_processor is not None:
|
| 216 |
+
# logits = orig[:, -1]
|
| 217 |
+
# logits = logits_processor(None, logits)
|
| 218 |
+
# probabilities = torch.nn.functional.softmax(logits, dim=1)
|
| 219 |
+
# token = torch.multinomial(probabilities, 1)
|
| 220 |
+
# else:
|
| 221 |
+
# token = torch.argmax(orig[:, -1])
|
| 222 |
+
# token = token[None, None]
|
| 223 |
+
# input_ids = torch.cat((input_ids, token.to(input_ids.device)), dim=1)
|
| 224 |
+
# # Clone the output hidden states
|
| 225 |
+
#
|
| 226 |
+
# draft_tokens, retrieve_indices,tree_mask,tree_position_ids = self.ea_layer.topK_genrate(hidden_states, input_ids, self.base_model.lm_head)
|
| 227 |
+
# if output_orig:
|
| 228 |
+
# return draft_tokens, retrieve_indices,tree_mask,tree_position_ids, outputs, orig, hidden_states, token
|
| 229 |
+
# return draft_tokens, retrieve_indices,tree_mask,tree_position_ids, hidden_states, token
|
| 230 |
+
return draft_tokens, retrieve_indices,tree_mask,tree_position_ids, logits, hidden_state, sample_token
|
| 231 |
+
|
| 232 |
+
def initialize_tree(input_ids, model, past_key_values, logits_processor):
|
| 233 |
+
outputs, orig, hidden_states = model(
|
| 234 |
+
input_ids, past_key_values=past_key_values, output_orig=True
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
if logits_processor is not None:
|
| 238 |
+
logits = orig[:, -1]
|
| 239 |
+
logits = logits_processor(None, logits)
|
| 240 |
+
probabilities = torch.nn.functional.softmax(logits, dim=1)
|
| 241 |
+
token = torch.multinomial(probabilities, 1)
|
| 242 |
+
else:
|
| 243 |
+
token = torch.argmax(orig[:, -1])
|
| 244 |
+
token = token[None, None]
|
| 245 |
+
input_ids = torch.cat((input_ids, token.to(input_ids.device)), dim=1)
|
| 246 |
+
|
| 247 |
+
# Clone the output hidden states
|
| 248 |
+
if model.use_eagle3:
|
| 249 |
+
ea_device = model.ea_layer.lm_head.weight.device
|
| 250 |
+
if outputs["hidden_states"][0].device != ea_device:
|
| 251 |
+
outputs["hidden_states"] = [x.to(ea_device) for x in outputs["hidden_states"]]
|
| 252 |
+
hidden_states=torch.cat(outputs["hidden_states"],dim=-1)
|
| 253 |
+
draft_tokens, retrieve_indices,tree_mask,tree_position_ids = model.ea_layer.topK_genrate(hidden_states, input_ids, model.base_model.lm_head,logits_processor)
|
| 254 |
+
return draft_tokens, retrieve_indices,tree_mask,tree_position_ids, orig, hidden_states, token
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def reset_tree_mode(
|
| 258 |
+
model,
|
| 259 |
+
):
|
| 260 |
+
model.base_model.model.tree_mask = None
|
| 261 |
+
model.base_model.model.tree_mode = None
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def reset_past_key_values(passed_key_values: List[torch.Tensor]) -> List[torch.Tensor]:
|
| 265 |
+
"""
|
| 266 |
+
Resets the current lengths in the passed key-values to zero.
|
| 267 |
+
|
| 268 |
+
This function is designed to be used during the evaluation of a baseline model.
|
| 269 |
+
It iterates through each layer's key-values and sets their current lengths to zero,
|
| 270 |
+
effectively resetting their state.
|
| 271 |
+
|
| 272 |
+
Args:
|
| 273 |
+
- passed_key_values (list of torch.Tensor): Contains past hidden states and past attention values for each layer.
|
| 274 |
+
|
| 275 |
+
Returns:
|
| 276 |
+
- passed_key_values (list of torch.Tensor): Updated past hidden states and past attention values with reset lengths.
|
| 277 |
+
"""
|
| 278 |
+
for i in range(len(passed_key_values)):
|
| 279 |
+
for j in range(2):
|
| 280 |
+
passed_key_values[i][j].current_length.fill_(0)
|
| 281 |
+
return passed_key_values
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def generate_candidates(tree_logits, tree_indices, retrieve_indices, sample_token, logits_processor):
|
| 285 |
+
sample_token = sample_token.to(tree_indices.device)
|
| 286 |
+
|
| 287 |
+
candidates_logit = sample_token[0]
|
| 288 |
+
|
| 289 |
+
candidates_tree_logits = tree_logits
|
| 290 |
+
|
| 291 |
+
candidates = torch.cat([candidates_logit, candidates_tree_logits.view(-1)], dim=-1)
|
| 292 |
+
|
| 293 |
+
tree_candidates = candidates[tree_indices]
|
| 294 |
+
|
| 295 |
+
tree_candidates_ext = torch.cat(
|
| 296 |
+
[tree_candidates, torch.zeros((1), dtype=torch.long, device=tree_candidates.device) - 1], dim=0)
|
| 297 |
+
|
| 298 |
+
cart_candidates = tree_candidates_ext[retrieve_indices]
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
# Unsqueeze the tree candidates for dimension consistency.
|
| 302 |
+
tree_candidates = tree_candidates.unsqueeze(0)
|
| 303 |
+
return cart_candidates, tree_candidates
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def tree_decoding(
|
| 307 |
+
model,
|
| 308 |
+
tree_candidates,
|
| 309 |
+
past_key_values,
|
| 310 |
+
tree_position_ids,
|
| 311 |
+
input_ids,
|
| 312 |
+
retrieve_indices,
|
| 313 |
+
):
|
| 314 |
+
position_ids = tree_position_ids + input_ids.shape[1]
|
| 315 |
+
if position_ids is not None and position_ids.dim() == 1:
|
| 316 |
+
position_ids = position_ids.unsqueeze(0)
|
| 317 |
+
outputs, tree_logits, hidden_state = model(
|
| 318 |
+
tree_candidates,
|
| 319 |
+
output_orig=True,
|
| 320 |
+
past_key_values=past_key_values,
|
| 321 |
+
position_ids=position_ids,
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
if model.use_eagle3:
|
| 325 |
+
ea_device = model.ea_layer.lm_head.weight.device
|
| 326 |
+
if outputs["hidden_states"][0].device != ea_device:
|
| 327 |
+
outputs["hidden_states"] = [x.to(ea_device) for x in outputs["hidden_states"]]
|
| 328 |
+
hidden_state = torch.cat(outputs["hidden_states"], dim=-1)
|
| 329 |
+
|
| 330 |
+
logits = tree_logits[0, retrieve_indices]
|
| 331 |
+
return logits, hidden_state, outputs
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def evaluate_posterior(
|
| 338 |
+
logits: torch.Tensor,
|
| 339 |
+
candidates: torch.Tensor,
|
| 340 |
+
logits_processor,
|
| 341 |
+
):
|
| 342 |
+
"""
|
| 343 |
+
Evaluate the posterior probabilities of the candidates based on the provided logits and choose the best candidate.
|
| 344 |
+
|
| 345 |
+
Depending on the temperature value, the function either uses greedy decoding or evaluates posterior
|
| 346 |
+
probabilities to select the best candidate.
|
| 347 |
+
|
| 348 |
+
Args:
|
| 349 |
+
- logits (torch.Tensor): Predicted logits of shape (batch_size, sequence_length, vocab_size).
|
| 350 |
+
- candidates (torch.Tensor): Candidate token sequences.
|
| 351 |
+
- temperature (float): Softmax temperature for probability scaling. A value of 0 indicates greedy decoding.
|
| 352 |
+
- posterior_threshold (float): Threshold for posterior probability.
|
| 353 |
+
- posterior_alpha (float): Scaling factor for the threshold.
|
| 354 |
+
|
| 355 |
+
Returns:
|
| 356 |
+
- best_candidate (torch.Tensor): Index of the chosen best candidate.
|
| 357 |
+
- accept_length (int): Length of the accepted candidate sequence.
|
| 358 |
+
"""
|
| 359 |
+
# Greedy decoding based on temperature value
|
| 360 |
+
if logits_processor is None:
|
| 361 |
+
# Find the tokens that match the maximum logits for each position in the sequence
|
| 362 |
+
posterior_mask = (
|
| 363 |
+
candidates[:, 1:].to(logits.device) == torch.argmax(logits[:, :-1], dim=-1)
|
| 364 |
+
).int()
|
| 365 |
+
candidates_accept_length = (torch.cumprod(posterior_mask, dim=1)).sum(dim=1)
|
| 366 |
+
accept_length = candidates_accept_length.max()
|
| 367 |
+
# Choose the best candidate
|
| 368 |
+
if accept_length == 0:
|
| 369 |
+
# Default to the first candidate if none are accepted
|
| 370 |
+
best_candidate = torch.tensor(0, dtype=torch.long, device=candidates.device)
|
| 371 |
+
else:
|
| 372 |
+
best_candidate = torch.argmax(candidates_accept_length).to(torch.long)
|
| 373 |
+
return best_candidate, accept_length, logits[best_candidate, accept_length]
|
| 374 |
+
|
| 375 |
+
else:
|
| 376 |
+
accept_length = 1
|
| 377 |
+
accept_cand = candidates[0][:1]
|
| 378 |
+
best_candidate = 0
|
| 379 |
+
for i in range(1, candidates.shape[1]):
|
| 380 |
+
if i != accept_length:
|
| 381 |
+
break
|
| 382 |
+
adjustflag = False
|
| 383 |
+
is_eq = (candidates[:, :accept_length] == accept_cand).all(dim=1)
|
| 384 |
+
fi = torch.nonzero(is_eq, as_tuple=True)[0][0]
|
| 385 |
+
gt_logits = logits[fi, i - 1][None]
|
| 386 |
+
gt_logits = logits_processor(None, gt_logits)[0]
|
| 387 |
+
gtp = torch.softmax(gt_logits, dim=0)
|
| 388 |
+
candidates_set = []
|
| 389 |
+
for j in range(candidates.shape[0]):
|
| 390 |
+
if is_eq[j]:
|
| 391 |
+
x = candidates[j, i]
|
| 392 |
+
xi = x.item()
|
| 393 |
+
if xi in candidates_set or xi == -1:
|
| 394 |
+
continue
|
| 395 |
+
candidates_set.append(xi)
|
| 396 |
+
r = random.random()
|
| 397 |
+
px = gtp[xi]
|
| 398 |
+
qx = 1.0
|
| 399 |
+
acp = px / qx
|
| 400 |
+
if r <= acp:
|
| 401 |
+
accept_cand = torch.cat((accept_cand, x[None]), dim=0)
|
| 402 |
+
accept_length += 1
|
| 403 |
+
best_candidate = j
|
| 404 |
+
break
|
| 405 |
+
else:
|
| 406 |
+
gtp[xi] = 0
|
| 407 |
+
gtp = gtp / gtp.sum()
|
| 408 |
+
adjustflag = True
|
| 409 |
+
if adjustflag and accept_length != candidates.shape[1]:
|
| 410 |
+
sample_p = gtp
|
| 411 |
+
else:
|
| 412 |
+
gt_logits = logits[best_candidate, accept_length - 1][None]
|
| 413 |
+
gt_logits = logits_processor(None, gt_logits)[0]
|
| 414 |
+
sample_p = torch.softmax(gt_logits, dim=0)
|
| 415 |
+
return torch.tensor(best_candidate), accept_length - 1, sample_p
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
@torch.no_grad()
|
| 419 |
+
def update_inference_inputs(
|
| 420 |
+
input_ids,
|
| 421 |
+
candidates,
|
| 422 |
+
best_candidate,
|
| 423 |
+
accept_length,
|
| 424 |
+
retrieve_indices,
|
| 425 |
+
logits_processor,
|
| 426 |
+
new_token,
|
| 427 |
+
past_key_values_data_list,
|
| 428 |
+
current_length_data,
|
| 429 |
+
model,
|
| 430 |
+
hidden_state_new,
|
| 431 |
+
sample_p
|
| 432 |
+
):
|
| 433 |
+
prev_input_len = input_ids.shape[1]
|
| 434 |
+
# Map the best candidate indices to the original indices in the sequence
|
| 435 |
+
select_indices = (
|
| 436 |
+
retrieve_indices[best_candidate, : accept_length + 1] + prev_input_len
|
| 437 |
+
)
|
| 438 |
+
# Append the tokens from the best candidate to the input sequence
|
| 439 |
+
input_ids = torch.cat(
|
| 440 |
+
[input_ids, candidates[None, best_candidate, : accept_length + 1].to(input_ids.device)], dim=-1
|
| 441 |
+
)
|
| 442 |
+
# Update the past key values based on the selected tokens
|
| 443 |
+
# Source tensor that contains relevant past information based on the selected candidate
|
| 444 |
+
for past_key_values_data in past_key_values_data_list:
|
| 445 |
+
tgt = past_key_values_data[..., select_indices.to(past_key_values_data.device), :]
|
| 446 |
+
# Destination tensor where the relevant past information will be stored
|
| 447 |
+
dst = past_key_values_data[..., prev_input_len: prev_input_len + tgt.shape[-2], :]
|
| 448 |
+
# Copy relevant past information from the source to the destination
|
| 449 |
+
dst.copy_(tgt, non_blocking=True)
|
| 450 |
+
|
| 451 |
+
# Update the current length tensor (currently only support batch size is 1)
|
| 452 |
+
current_length_data.fill_(prev_input_len + tgt.shape[-2])
|
| 453 |
+
|
| 454 |
+
retrieve_hidden_state_new = hidden_state_new[:, retrieve_indices]
|
| 455 |
+
accept_hidden_state_new = retrieve_hidden_state_new[:, best_candidate, : accept_length + 1]
|
| 456 |
+
# token=model.base_model.lm_head(accept_hidden_state_new[:,-1]).argmax()
|
| 457 |
+
# token=token[None,None]
|
| 458 |
+
prob = sample_p
|
| 459 |
+
if logits_processor is not None:
|
| 460 |
+
token = torch.multinomial(prob, 1)
|
| 461 |
+
token = token[None]
|
| 462 |
+
else:
|
| 463 |
+
token = torch.argmax(prob)
|
| 464 |
+
token = token[None, None]
|
| 465 |
+
# hidden_state = torch.cat((hidden_state, accept_hidden_state_new), dim=1)
|
| 466 |
+
draft_tokens, retrieve_indices,tree_mask,tree_position_ids = model.ea_layer.topK_genrate(accept_hidden_state_new,
|
| 467 |
+
input_ids=torch.cat((input_ids, token.to(input_ids.device)), dim=1),
|
| 468 |
+
head=model.base_model.lm_head,logits_processor=logits_processor)
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
new_token += accept_length + 1
|
| 472 |
+
|
| 473 |
+
return input_ids, draft_tokens, retrieve_indices,tree_mask,tree_position_ids, new_token, None, token
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
if __name__ == "__main__":
|
| 477 |
+
logits = torch.randn(1, 5)
|
| 478 |
+
tp = prepare_logits_processor(0.9, 0, 0.9, 0)
|
| 479 |
+
l = tp(None, logits)
|
| 480 |
+
if tp is None:
|
| 481 |
+
print(tp)
|
eagle/model/utils_c.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
# typing
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
TOPK = 10 # topk for sparse tree
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def pad_path(path: List[int], length: int, pad_value: int = -2) -> List[int]:
|
| 10 |
+
"""
|
| 11 |
+
Pad the given path list with a specific value up to a specified length.
|
| 12 |
+
|
| 13 |
+
Parameters:
|
| 14 |
+
- path (list): The original list that needs padding.
|
| 15 |
+
- length (int): The desired length of the padded list.
|
| 16 |
+
- pad_value (optional, default=-2): The value to use for padding.
|
| 17 |
+
|
| 18 |
+
Returns:
|
| 19 |
+
- list: A new list based on the original path but padded to the desired length.
|
| 20 |
+
|
| 21 |
+
Example:
|
| 22 |
+
>>> pad_path([1,2,3], 5)
|
| 23 |
+
[1, 2, 3, -2, -2]
|
| 24 |
+
|
| 25 |
+
Note:
|
| 26 |
+
If the given path is already longer than the specified length,
|
| 27 |
+
then no padding occurs, and the original path is returned.
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
# Calculate the number of padding values needed by subtracting the length
|
| 31 |
+
# of the path from the desired length.
|
| 32 |
+
# Append the padding values to the original path and return the new list.
|
| 33 |
+
return path + [pad_value] * (length - len(path))
|
| 34 |
+
|
| 35 |
+
class node:
|
| 36 |
+
def __init__(self,parent=None,value=None,dict_key=None):
|
| 37 |
+
self.parent=parent
|
| 38 |
+
self.value=value
|
| 39 |
+
if parent:
|
| 40 |
+
self.depth=parent.depth+1
|
| 41 |
+
parent.children.append(self)
|
| 42 |
+
else:
|
| 43 |
+
self.depth=0
|
| 44 |
+
self.children=[]
|
| 45 |
+
self.dict_key=dict_key
|
| 46 |
+
def is_leaf(self):
|
| 47 |
+
return len(self.children)==0
|
| 48 |
+
|
| 49 |
+
def all_index(self):
|
| 50 |
+
if not self.parent.parent:
|
| 51 |
+
return [self.index]
|
| 52 |
+
else:
|
| 53 |
+
return self.parent.all_index()+[self.index]
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class Tree:
|
| 58 |
+
def __init__(self,tree_list):
|
| 59 |
+
sorted_tree_list = sorted(tree_list, key=lambda x: (len(x), x))
|
| 60 |
+
self.root=node()
|
| 61 |
+
self.node_dic={}
|
| 62 |
+
for tree_node in sorted_tree_list:
|
| 63 |
+
cur_value=tree_node[-1]
|
| 64 |
+
if len(tree_node)==1:
|
| 65 |
+
cur_node=node(parent=self.root,value=cur_value,dict_key=tuple(tree_node))
|
| 66 |
+
else:
|
| 67 |
+
cur_parent=self.node_dic[tuple(tree_node[:-1])]
|
| 68 |
+
cur_node = node(parent=cur_parent, value=cur_value,dict_key=tuple(tree_node))
|
| 69 |
+
self.node_dic[tuple(tree_node)] = cur_node
|
| 70 |
+
self.indexnode()
|
| 71 |
+
|
| 72 |
+
def max_depth(self):
|
| 73 |
+
return max([item.depth for item in self.node_dic.values()])
|
| 74 |
+
|
| 75 |
+
def num_node_wchild(self):
|
| 76 |
+
num_c=0
|
| 77 |
+
for item in self.node_dic.values():
|
| 78 |
+
if not item.is_leaf():
|
| 79 |
+
num_c+=1
|
| 80 |
+
return num_c
|
| 81 |
+
|
| 82 |
+
def get_node_wchild(self):
|
| 83 |
+
ns=[]
|
| 84 |
+
for item in self.node_dic.values():
|
| 85 |
+
if not item.is_leaf():
|
| 86 |
+
ns.append(item)
|
| 87 |
+
return ns
|
| 88 |
+
|
| 89 |
+
def indexnode(self):
|
| 90 |
+
cur_index=0
|
| 91 |
+
for key in self.node_dic:
|
| 92 |
+
cur_node=self.node_dic[key]
|
| 93 |
+
if not cur_node.is_leaf():
|
| 94 |
+
cur_node.index=cur_index
|
| 95 |
+
cur_index+=1
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def generate_tree_buffers(tree_choices, device="cuda"):
|
| 101 |
+
tree=Tree(tree_choices)
|
| 102 |
+
sorted_tree_choices = sorted(tree_choices, key=lambda x: (len(x), x))
|
| 103 |
+
tree_len = tree.num_node_wchild()
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
max_depth=tree.max_depth()
|
| 107 |
+
nodes_wc=tree.get_node_wchild()
|
| 108 |
+
|
| 109 |
+
depth_counts=[0 for _ in range(max_depth-1)]
|
| 110 |
+
for x in nodes_wc:
|
| 111 |
+
depth_counts[x.depth-1]+=1
|
| 112 |
+
depth_counts_sum = [sum(depth_counts[:i + 1]) for i in range(len(depth_counts))]
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
tree_attn_mask = torch.eye(tree_len, tree_len)
|
| 116 |
+
|
| 117 |
+
for id,x in enumerate(nodes_wc):
|
| 118 |
+
tree_attn_mask[id,x.all_index()]=1
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
tree_attn_mask_list0=[tree_attn_mask[:ml,:ml] for ml in depth_counts_sum]
|
| 124 |
+
tree_attn_mask_list=[]
|
| 125 |
+
for id,x in enumerate(tree_attn_mask_list0):
|
| 126 |
+
x=x[-depth_counts[id]:]
|
| 127 |
+
tree_attn_mask_list.append(x)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
tree_indices_list = [torch.zeros(ml, dtype=torch.long) for ml in depth_counts]
|
| 132 |
+
repeat_nums=[[] for _ in depth_counts]
|
| 133 |
+
start = 0
|
| 134 |
+
bias = 0
|
| 135 |
+
for i in range(len(depth_counts)):
|
| 136 |
+
bias = 0
|
| 137 |
+
repeat_j=0
|
| 138 |
+
for j in range(depth_counts[i]):
|
| 139 |
+
cur_node = nodes_wc[start + j]
|
| 140 |
+
cur_parent = cur_node.parent
|
| 141 |
+
|
| 142 |
+
if j != 0:
|
| 143 |
+
if cur_parent != parent:
|
| 144 |
+
bias += 1
|
| 145 |
+
parent = cur_parent
|
| 146 |
+
repeat_nums[i].append(j-repeat_j)
|
| 147 |
+
repeat_j=j
|
| 148 |
+
else:
|
| 149 |
+
parent = cur_parent
|
| 150 |
+
tree_indices_list[i][j] = cur_node.value + TOPK * (bias)
|
| 151 |
+
repeat_nums[i].append(j - repeat_j+1)
|
| 152 |
+
start += depth_counts[i]
|
| 153 |
+
|
| 154 |
+
position_ids = [torch.zeros(ml, dtype=torch.long) for ml in depth_counts]
|
| 155 |
+
|
| 156 |
+
# start = 0
|
| 157 |
+
# for i in range(len(depth_counts)):
|
| 158 |
+
# position_ids[start: start + depth_counts[i]] = i
|
| 159 |
+
# start += depth_counts[i]
|
| 160 |
+
|
| 161 |
+
tree_buffers = {
|
| 162 |
+
"attn_mask": [i.unsqueeze(0).unsqueeze(0) for i in tree_attn_mask_list],
|
| 163 |
+
"tree_indices": tree_indices_list,
|
| 164 |
+
"position_ids":position_ids,
|
| 165 |
+
"repeat_nums":repeat_nums
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
# Move the tensors in the dictionary to the specified device
|
| 169 |
+
tree_buffers = {
|
| 170 |
+
k: [i.clone().to(device) for i in v]
|
| 171 |
+
if isinstance(v[0], torch.Tensor)
|
| 172 |
+
else (
|
| 173 |
+
torch.tensor(v, device=device)
|
| 174 |
+
if isinstance(v, torch.Tensor)
|
| 175 |
+
else v
|
| 176 |
+
)
|
| 177 |
+
for k, v in tree_buffers.items()
|
| 178 |
+
}
|
| 179 |
+
return tree_buffers
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def reset_past_key_values(passed_key_values: List[torch.Tensor]) -> List[torch.Tensor]:
|
| 183 |
+
"""
|
| 184 |
+
Resets the current lengths in the passed key-values to zero.
|
| 185 |
+
|
| 186 |
+
This function is designed to be used during the evaluation of a baseline model.
|
| 187 |
+
It iterates through each layer's key-values and sets their current lengths to zero,
|
| 188 |
+
effectively resetting their state.
|
| 189 |
+
|
| 190 |
+
Args:
|
| 191 |
+
- passed_key_values (list of torch.Tensor): Contains past hidden states and past attention values for each layer.
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
- passed_key_values (list of torch.Tensor): Updated past hidden states and past attention values with reset lengths.
|
| 195 |
+
"""
|
| 196 |
+
for i in range(len(passed_key_values)):
|
| 197 |
+
for j in range(2):
|
| 198 |
+
passed_key_values[i][j].current_length.fill_(0)
|
| 199 |
+
return passed_key_values
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
if __name__=="__main__":
|
| 204 |
+
from choices import mc_sim_7b_63
|
| 205 |
+
a=generate_tree_buffers(mc_sim_7b_63)
|
| 206 |
+
print(a)
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
git+https://github.com/huggingface/transformers
|
| 3 |
+
torch
|
| 4 |
+
spaces
|
| 5 |
+
accelerate
|
| 6 |
+
tokenizers
|
| 7 |
+
numpy
|
| 8 |
+
Pillow
|
| 9 |
+
requests
|
| 10 |
+
sentencepiece
|
| 11 |
+
flash-attn
|
utils_chatbot.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
def organize_messages(message, history):
|
| 3 |
+
msg_ls = [dict(
|
| 4 |
+
role = "system",
|
| 5 |
+
content = "You are a helpful assistant.",
|
| 6 |
+
)]
|
| 7 |
+
for user, assistant in history:
|
| 8 |
+
msg_ls.append(dict(
|
| 9 |
+
role = "user",
|
| 10 |
+
content = user,
|
| 11 |
+
))
|
| 12 |
+
if assistant:
|
| 13 |
+
msg_ls.append(dict(
|
| 14 |
+
role = "assistant",
|
| 15 |
+
content = assistant,
|
| 16 |
+
))
|
| 17 |
+
msg_ls.append(dict(
|
| 18 |
+
role = "user",
|
| 19 |
+
content = message,
|
| 20 |
+
))
|
| 21 |
+
return msg_ls
|
| 22 |
+
|
| 23 |
+
def stream2display_text(stream_text, token_per_sec):
|
| 24 |
+
if stream_text.startswith("think>"):
|
| 25 |
+
stream_text = f"<{stream_text}"
|
| 26 |
+
|
| 27 |
+
if not stream_text.startswith("<think>"):
|
| 28 |
+
return stream_text
|
| 29 |
+
|
| 30 |
+
if not "</think>" in stream_text:
|
| 31 |
+
think_text, result_text = stream_text.replace("<think>", ""), ""
|
| 32 |
+
else:
|
| 33 |
+
think_text, result_text = stream_text.split("</think>")
|
| 34 |
+
think_text = think_text.replace("<think>", "")
|
| 35 |
+
|
| 36 |
+
result_text = result_text.replace("<|im_end|>", "")
|
| 37 |
+
|
| 38 |
+
think_block = "\n".join(f"> {line}" if line else ">" for line in think_text.rstrip().splitlines())
|
| 39 |
+
# display_text = f"{think_block}\n\n{result_text}"
|
| 40 |
+
|
| 41 |
+
display_text_ls = [think_block]
|
| 42 |
+
if result_text:
|
| 43 |
+
display_text_ls.append(f"{result_text}")
|
| 44 |
+
display_text_ls.append(f"```{token_per_sec:.2f} token/s```")
|
| 45 |
+
|
| 46 |
+
display_text = "\n\n".join(display_text_ls)
|
| 47 |
+
|
| 48 |
+
return display_text
|
| 49 |
+
|
| 50 |
+
def mtp_new_tokens(pred_ids, gen_tk_count, existing_tk_count, stop_token_ids):
|
| 51 |
+
output_ids = pred_ids[0][existing_tk_count:]
|
| 52 |
+
|
| 53 |
+
if stop_token_ids:
|
| 54 |
+
stop_token_ids_index = [
|
| 55 |
+
i
|
| 56 |
+
for i, id in enumerate(output_ids)
|
| 57 |
+
if id in stop_token_ids
|
| 58 |
+
]
|
| 59 |
+
if len(stop_token_ids_index) > 0:
|
| 60 |
+
output_ids = output_ids[: stop_token_ids_index[0]]
|
| 61 |
+
new_tokens = output_ids[gen_tk_count:]
|
| 62 |
+
|
| 63 |
+
return new_tokens, len(output_ids)
|