Spaces:
Build error
Build error
pgzmnk
commited on
Commit
·
640dc7a
1
Parent(s):
4c8c6b4
Restructure repo. Show map is functional. Calculation is not yet functional.
Browse files- app.py +189 -195
- utils/duckdb_queries.py +30 -0
- utils/{js.py → gradio.py} +0 -0
app.py
CHANGED
@@ -10,10 +10,10 @@ import pandas as pd
|
|
10 |
import plotly.graph_objects as go
|
11 |
import yaml
|
12 |
import numpy as np
|
13 |
-
from google.oauth2 import service_account
|
14 |
|
15 |
|
16 |
-
from utils.
|
|
|
17 |
|
18 |
# Logging
|
19 |
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
@@ -47,25 +47,32 @@ class IndexGenerator:
|
|
47 |
self,
|
48 |
centroid,
|
49 |
roi_radius,
|
50 |
-
year,
|
51 |
indices_file,
|
52 |
project_name="",
|
53 |
map=None,
|
54 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
self.indices = self._load_indices(indices_file)
|
56 |
self.centroid = centroid
|
57 |
self.roi = ee.Geometry.Point(*centroid).buffer(roi_radius)
|
58 |
-
self.
|
59 |
-
self.
|
60 |
-
self.
|
61 |
-
self.
|
62 |
-
self.project_name = project_name
|
63 |
self.map = map
|
64 |
if self.map is not None:
|
65 |
self.show = True
|
66 |
else:
|
67 |
self.show = False
|
68 |
|
|
|
69 |
def _cloudfree(self, gee_path):
|
70 |
"""
|
71 |
Internal method to generate a cloud-free composite.
|
@@ -184,208 +191,195 @@ class IndexGenerator:
|
|
184 |
df = pd.DataFrame(data)
|
185 |
return df
|
186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
if not os.getenv("motherduck_token"):
|
192 |
-
raise Exception(
|
193 |
-
"No motherduck token found. Please set the `motherduck_token` environment variable."
|
194 |
-
)
|
195 |
-
else:
|
196 |
-
con = duckdb.connect("md:climatebase")
|
197 |
-
con.sql("USE climatebase;")
|
198 |
-
|
199 |
-
# load extensions
|
200 |
-
con.sql("""INSTALL spatial; LOAD spatial;""")
|
201 |
-
|
202 |
-
return con
|
203 |
|
|
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
ee.Initialize(credentials)
|
214 |
-
|
215 |
-
|
216 |
-
def load_indices(indices_file):
|
217 |
-
# Read index configurations
|
218 |
-
with open(indices_file, "r") as stream:
|
219 |
-
try:
|
220 |
-
return yaml.safe_load(stream)
|
221 |
-
except yaml.YAMLError as e:
|
222 |
-
logging.error(e)
|
223 |
-
return None
|
224 |
-
|
225 |
-
|
226 |
-
def create_dataframe(years, project_name):
|
227 |
-
dfs = []
|
228 |
-
logging.info(years)
|
229 |
-
indices = load_indices(INDICES_FILE)
|
230 |
-
for year in years:
|
231 |
-
logging.info(year)
|
232 |
-
ig = IndexGenerator(
|
233 |
-
centroid=LOCATION,
|
234 |
-
roi_radius=ROI_RADIUS,
|
235 |
-
year=year,
|
236 |
-
indices_file=INDICES_FILE,
|
237 |
-
project_name=project_name,
|
238 |
)
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
)
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
# Otherwise, return the default values of 0 zoom and the coordinate origin as center point
|
264 |
-
return 0, (0, 0)
|
265 |
-
|
266 |
-
# Get the boundary-box
|
267 |
-
b_box = {}
|
268 |
-
b_box["height"] = latitudes.max() - latitudes.min()
|
269 |
-
b_box["width"] = longitudes.max() - longitudes.min()
|
270 |
-
b_box["center"] = (np.mean(longitudes), np.mean(latitudes))
|
271 |
-
|
272 |
-
# get the area of the bounding box in order to calculate a zoom-level
|
273 |
-
area = b_box["height"] * b_box["width"]
|
274 |
-
|
275 |
-
# * 1D-linear interpolation with numpy:
|
276 |
-
# - Pass the area as the only x-value and not as a list, in order to return a scalar as well
|
277 |
-
# - The x-points "xp" should be in parts in comparable order of magnitude of the given area
|
278 |
-
# - The zpom-levels are adapted to the areas, i.e. start with the smallest area possible of 0
|
279 |
-
# which leads to the highest possible zoom value 20, and so forth decreasing with increasing areas
|
280 |
-
# as these variables are antiproportional
|
281 |
-
zoom = np.interp(
|
282 |
-
x=area,
|
283 |
-
xp=[0, 5**-10, 4**-10, 3**-10, 2**-10, 1**-10, 1**-5],
|
284 |
-
fp=[20, 15, 14, 13, 12, 7, 5],
|
285 |
-
)
|
286 |
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
311 |
)
|
312 |
-
)
|
313 |
-
|
314 |
-
fig.update_layout(
|
315 |
-
mapbox={
|
316 |
-
"style": "stamen-terrain",
|
317 |
-
"center": {"lon": bbox_center[0], "lat": bbox_center[1]},
|
318 |
-
"zoom": zoom,
|
319 |
-
"layers": [
|
320 |
-
{
|
321 |
-
"source": {
|
322 |
-
"type": "FeatureCollection",
|
323 |
-
"features": [{"type": "Feature", "geometry": geometry}],
|
324 |
-
},
|
325 |
-
"type": "fill",
|
326 |
-
"below": "traces",
|
327 |
-
"color": "royalblue",
|
328 |
-
}
|
329 |
-
],
|
330 |
-
},
|
331 |
-
margin={"l": 0, "r": 0, "b": 0, "t": 0},
|
332 |
-
)
|
333 |
-
|
334 |
-
return fig
|
335 |
-
|
336 |
|
337 |
-
#
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
-
|
352 |
-
|
353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
)
|
355 |
|
356 |
-
|
357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
"""
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
"""
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
|
|
|
|
|
|
|
|
|
|
376 |
|
|
|
|
|
377 |
|
378 |
-
def motherduck_list_projects(author_id):
|
379 |
-
return con.execute(
|
380 |
-
"SELECT DISTINCT name FROM project WHERE authorId = ? AND geometry != 'null'",
|
381 |
-
[author_id],
|
382 |
-
).df()
|
383 |
|
384 |
|
385 |
-
with gr.Blocks() as demo:
|
386 |
-
# Environment setup
|
387 |
-
authenticate_ee(GEE_SERVICE_ACCOUNT)
|
388 |
-
con = set_up_duckdb()
|
389 |
with gr.Column():
|
390 |
m1 = gr.Plot()
|
391 |
with gr.Row():
|
@@ -402,19 +396,19 @@ with gr.Blocks() as demo:
|
|
402 |
label="Biodiversity scores by year",
|
403 |
)
|
404 |
calc_btn.click(
|
405 |
-
calculate_biodiversity_score,
|
406 |
inputs=[start_year, end_year, project_name],
|
407 |
outputs=results_df,
|
408 |
)
|
409 |
view_btn.click(
|
410 |
-
fn=show_project_map,
|
411 |
inputs=[project_name],
|
412 |
outputs=[m1],
|
413 |
)
|
414 |
|
415 |
def update_project_dropdown_list(url_params):
|
416 |
username = url_params.get("username", "default")
|
417 |
-
projects =
|
418 |
# to-do: filter projects based on user
|
419 |
return gr.Dropdown.update(choices=projects["name"].tolist())
|
420 |
|
|
|
10 |
import plotly.graph_objects as go
|
11 |
import yaml
|
12 |
import numpy as np
|
|
|
13 |
|
14 |
|
15 |
+
from utils.gradio import get_window_url_params
|
16 |
+
from utils.duckdb_queries import list_projects_by_author, get_project_geometry
|
17 |
|
18 |
# Logging
|
19 |
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
|
|
47 |
self,
|
48 |
centroid,
|
49 |
roi_radius,
|
|
|
50 |
indices_file,
|
51 |
project_name="",
|
52 |
map=None,
|
53 |
):
|
54 |
+
|
55 |
+
|
56 |
+
# Authenticate to GEE & DuckDB
|
57 |
+
self._authenticate_ee(GEE_SERVICE_ACCOUNT)
|
58 |
+
self.con = self._get_duckdb_conn()
|
59 |
+
|
60 |
+
|
61 |
+
# Set instance variables
|
62 |
self.indices = self._load_indices(indices_file)
|
63 |
self.centroid = centroid
|
64 |
self.roi = ee.Geometry.Point(*centroid).buffer(roi_radius)
|
65 |
+
# self.start_date = str(datetime.date(self.year, 1, 1))
|
66 |
+
# self.end_date = str(datetime.date(self.year, 12, 31))
|
67 |
+
# self.daterange = [self.start_date, self.end_date]
|
68 |
+
# self.project_name = project_name
|
|
|
69 |
self.map = map
|
70 |
if self.map is not None:
|
71 |
self.show = True
|
72 |
else:
|
73 |
self.show = False
|
74 |
|
75 |
+
|
76 |
def _cloudfree(self, gee_path):
|
77 |
"""
|
78 |
Internal method to generate a cloud-free composite.
|
|
|
191 |
df = pd.DataFrame(data)
|
192 |
return df
|
193 |
|
194 |
+
@staticmethod
|
195 |
+
def _get_duckdb_conn():
|
196 |
+
logging.info("Configuring DuckDB connection...")
|
197 |
+
# use `climatebase` db
|
198 |
+
if not os.getenv("motherduck_token"):
|
199 |
+
raise Exception(
|
200 |
+
"No motherduck token found. Please set the `motherduck_token` environment variable."
|
201 |
+
)
|
202 |
+
else:
|
203 |
+
con = duckdb.connect("md:climatebase")
|
204 |
+
con.sql("USE climatebase;")
|
205 |
|
206 |
+
# load extensions
|
207 |
+
con.sql("""INSTALL spatial; LOAD spatial;""")
|
208 |
+
logging.info("Configured DuckDB connection.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
return con
|
211 |
|
212 |
+
@staticmethod
|
213 |
+
def _authenticate_ee(ee_service_account):
|
214 |
+
"""
|
215 |
+
Huggingface Spaces does not support secret files, therefore authenticate with an environment variable containing the JSON.
|
216 |
+
"""
|
217 |
+
logging.info("Authenticating to Google Earth Engine...")
|
218 |
+
credentials = ee.ServiceAccountCredentials(
|
219 |
+
ee_service_account, key_data=os.environ["ee_service_account"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
)
|
221 |
+
ee.Initialize(credentials)
|
222 |
+
logging.info("Authenticated to Google Earth Engine.")
|
223 |
+
|
224 |
+
def _create_dataframe(self, years, project_name):
|
225 |
+
dfs = []
|
226 |
+
logging.info(years)
|
227 |
+
indices = self._load_indices(INDICES_FILE)
|
228 |
+
for year in years:
|
229 |
+
logging.info(year)
|
230 |
+
ig = IndexGenerator(
|
231 |
+
centroid=LOCATION,
|
232 |
+
roi_radius=ROI_RADIUS,
|
233 |
+
year=year,
|
234 |
+
indices_file=INDICES_FILE,
|
235 |
+
project_name=project_name,
|
236 |
+
)
|
237 |
+
df = ig.generate_composite_index_df(list(indices.keys()))
|
238 |
+
dfs.append(df)
|
239 |
+
return pd.concat(dfs)
|
240 |
+
|
241 |
+
# h/t: https://community.plotly.com/t/dynamic-zoom-for-mapbox/32658/12
|
242 |
+
def _latlon_to_config(
|
243 |
+
self,
|
244 |
+
longitudes=None,
|
245 |
+
latitudes=None
|
246 |
+
):
|
247 |
+
"""Function documentation:\n
|
248 |
+
Basic framework adopted from Krichardson under the following thread:
|
249 |
+
https://community.plotly.com/t/dynamic-zoom-for-mapbox/32658/7
|
250 |
|
251 |
+
# NOTE:
|
252 |
+
# THIS IS A TEMPORARY SOLUTION UNTIL THE DASH TEAM IMPLEMENTS DYNAMIC ZOOM
|
253 |
+
# in their plotly-functions associated with mapbox, such as go.Densitymapbox() etc.
|
254 |
|
255 |
+
Returns the appropriate zoom-level for these plotly-mapbox-graphics along with
|
256 |
+
the center coordinate tuple of all provided coordinate tuples.
|
257 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
+
# Check whether both latitudes and longitudes have been passed,
|
260 |
+
# or if the list lenghts don't match
|
261 |
+
if (latitudes is None or longitudes is None) or (
|
262 |
+
len(latitudes) != len(longitudes)
|
263 |
+
):
|
264 |
+
# Otherwise, return the default values of 0 zoom and the coordinate origin as center point
|
265 |
+
return 0, (0, 0)
|
266 |
+
|
267 |
+
# Get the boundary-box
|
268 |
+
b_box = {}
|
269 |
+
b_box["height"] = latitudes.max() - latitudes.min()
|
270 |
+
b_box["width"] = longitudes.max() - longitudes.min()
|
271 |
+
b_box["center"] = (np.mean(longitudes), np.mean(latitudes))
|
272 |
+
|
273 |
+
# get the area of the bounding box in order to calculate a zoom-level
|
274 |
+
area = b_box["height"] * b_box["width"]
|
275 |
+
|
276 |
+
# * 1D-linear interpolation with numpy:
|
277 |
+
# - Pass the area as the only x-value and not as a list, in order to return a scalar as well
|
278 |
+
# - The x-points "xp" should be in parts in comparable order of magnitude of the given area
|
279 |
+
# - The zpom-levels are adapted to the areas, i.e. start with the smallest area possible of 0
|
280 |
+
# which leads to the highest possible zoom value 20, and so forth decreasing with increasing areas
|
281 |
+
# as these variables are antiproportional
|
282 |
+
zoom = np.interp(
|
283 |
+
x=area,
|
284 |
+
xp=[0, 5**-10, 4**-10, 3**-10, 2**-10, 1**-10, 1**-5],
|
285 |
+
fp=[20, 15, 14, 13, 12, 7, 5],
|
286 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
+
# Finally, return the zoom level and the associated boundary-box center coordinates
|
289 |
+
return zoom, b_box["center"]
|
290 |
+
|
291 |
+
def show_project_map(self, project_name):
|
292 |
+
breakpoint()
|
293 |
+
prepared_statement = get_project_geometry(project_name)
|
294 |
+
# self.con.execute("SELECT geometry FROM project WHERE name = ? LIMIT 1", [project_name]).fetchall()
|
295 |
+
features = json.loads(prepared_statement[0][0].replace("'", '"'))["features"]
|
296 |
+
geometry = features[0]["geometry"]
|
297 |
+
longitudes = np.array(geometry["coordinates"])[0, :, 0]
|
298 |
+
latitudes = np.array(geometry["coordinates"])[0, :, 1]
|
299 |
+
zoom, bbox_center = self._latlon_to_config(longitudes, latitudes)
|
300 |
+
fig = go.Figure(
|
301 |
+
go.Scattermapbox(
|
302 |
+
mode="markers",
|
303 |
+
lon=[bbox_center[0]],
|
304 |
+
lat=[bbox_center[1]],
|
305 |
+
marker={"size": 20, "color": ["cyan"]},
|
306 |
+
)
|
307 |
+
)
|
308 |
|
309 |
+
fig.update_layout(
|
310 |
+
mapbox={
|
311 |
+
"style": "stamen-terrain",
|
312 |
+
"center": {"lon": bbox_center[0], "lat": bbox_center[1]},
|
313 |
+
"zoom": zoom,
|
314 |
+
"layers": [
|
315 |
+
{
|
316 |
+
"source": {
|
317 |
+
"type": "FeatureCollection",
|
318 |
+
"features": [{"type": "Feature", "geometry": geometry}],
|
319 |
+
},
|
320 |
+
"type": "fill",
|
321 |
+
"below": "traces",
|
322 |
+
"color": "royalblue",
|
323 |
+
}
|
324 |
+
],
|
325 |
+
},
|
326 |
+
margin={"l": 0, "r": 0, "b": 0, "t": 0},
|
327 |
)
|
328 |
|
329 |
+
return fig
|
330 |
+
|
331 |
+
def calculate_biodiversity_score(self, start_year, end_year, project_name):
|
332 |
+
years = []
|
333 |
+
for year in range(start_year, end_year):
|
334 |
+
row_exists = con.execute(
|
335 |
+
"SELECT COUNT(1) FROM bioindicator WHERE (year = ? AND project_name = ?)",
|
336 |
+
[year, project_name],
|
337 |
+
).fetchall()[0][0]
|
338 |
+
if not row_exists:
|
339 |
+
years.append(year)
|
340 |
+
|
341 |
+
if len(years) > 0:
|
342 |
+
df = self._create_dataframe(years, project_name)
|
343 |
+
|
344 |
+
# Write score table to `_temptable`
|
345 |
+
self.con.sql(
|
346 |
+
"CREATE OR REPLACE TABLE _temptable AS SELECT *, (value * area) AS score FROM (SELECT year, project_name, AVG(value) AS value, area FROM df GROUP BY year, project_name, area ORDER BY project_name)"
|
347 |
+
)
|
348 |
+
|
349 |
+
# Create `bioindicator` table IF NOT EXISTS.
|
350 |
+
self.con.sql(
|
351 |
+
"""
|
352 |
+
USE climatebase;
|
353 |
+
CREATE TABLE IF NOT EXISTS bioindicator (year BIGINT, project_name VARCHAR(255), value DOUBLE, area DOUBLE, score DOUBLE, CONSTRAINT unique_year_project_name UNIQUE (year, project_name));
|
354 |
"""
|
355 |
+
)
|
356 |
+
# UPSERT project record
|
357 |
+
self.con.sql(
|
358 |
+
"""
|
359 |
+
INSERT INTO bioindicator FROM _temptable
|
360 |
+
ON CONFLICT (year, project_name) DO UPDATE SET value = excluded.value;
|
361 |
"""
|
362 |
+
)
|
363 |
+
logging.info("upsert records into motherduck")
|
364 |
+
scores = self.con.execute(
|
365 |
+
"SELECT * FROM bioindicator WHERE (year >= ? AND year <= ? AND project_name = ?)",
|
366 |
+
[start_year, end_year, project_name],
|
367 |
+
).df()
|
368 |
+
return scores
|
369 |
+
|
370 |
+
|
371 |
+
# Instantiate outside gradio app to avoid re-initializing GEE, which is slow
|
372 |
+
indexgenerator = IndexGenerator(
|
373 |
+
centroid=LOCATION,
|
374 |
+
roi_radius=ROI_RADIUS,
|
375 |
+
indices_file=INDICES_FILE,
|
376 |
+
)
|
377 |
|
378 |
+
with gr.Blocks() as demo:
|
379 |
+
print("start gradio app")
|
380 |
|
|
|
|
|
|
|
|
|
|
|
381 |
|
382 |
|
|
|
|
|
|
|
|
|
383 |
with gr.Column():
|
384 |
m1 = gr.Plot()
|
385 |
with gr.Row():
|
|
|
396 |
label="Biodiversity scores by year",
|
397 |
)
|
398 |
calc_btn.click(
|
399 |
+
indexgenerator.calculate_biodiversity_score,
|
400 |
inputs=[start_year, end_year, project_name],
|
401 |
outputs=results_df,
|
402 |
)
|
403 |
view_btn.click(
|
404 |
+
fn=indexgenerator.show_project_map,
|
405 |
inputs=[project_name],
|
406 |
outputs=[m1],
|
407 |
)
|
408 |
|
409 |
def update_project_dropdown_list(url_params):
|
410 |
username = url_params.get("username", "default")
|
411 |
+
projects = list_projects_by_author(author_id=username)
|
412 |
# to-do: filter projects based on user
|
413 |
return gr.Dropdown.update(choices=projects["name"].tolist())
|
414 |
|
utils/duckdb_queries.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import duckdb
|
3 |
+
|
4 |
+
import logging
|
5 |
+
|
6 |
+
|
7 |
+
# Configure DuckDB connection
|
8 |
+
logging.info("Configuring DuckDB connection...")
|
9 |
+
|
10 |
+
if not os.getenv("motherduck_token"):
|
11 |
+
raise Exception(
|
12 |
+
"No motherduck token found. Please set the `motherduck_token` environment variable."
|
13 |
+
)
|
14 |
+
else:
|
15 |
+
con = duckdb.connect("md:climatebase")
|
16 |
+
con.sql("USE climatebase;")
|
17 |
+
|
18 |
+
# load extensions
|
19 |
+
con.sql("""INSTALL spatial; LOAD spatial;""")
|
20 |
+
logging.info("Configured DuckDB connection.")
|
21 |
+
|
22 |
+
|
23 |
+
def list_projects_by_author(author_id):
|
24 |
+
return con.execute(
|
25 |
+
"SELECT DISTINCT name FROM project WHERE authorId = ? AND geometry != 'null'",
|
26 |
+
[author_id],
|
27 |
+
).df()
|
28 |
+
|
29 |
+
def get_project_geometry(project_name):
|
30 |
+
return con.execute("SELECT geometry FROM project WHERE name = ? LIMIT 1", [project_name]).fetchall()
|
utils/{js.py → gradio.py}
RENAMED
File without changes
|