Spaces:
Build error
Build error
Merge pull request #3 from openbiodiversity/develop
Browse files- .gitignore +4 -0
- app.py +350 -54
- indices.yaml +169 -0
- requirements.txt +0 -1
.gitignore
CHANGED
@@ -1,3 +1,7 @@
|
|
1 |
.venv
|
2 |
__pycache__/
|
3 |
service_account.json
|
|
|
|
|
|
|
|
|
|
1 |
.venv
|
2 |
__pycache__/
|
3 |
service_account.json
|
4 |
+
ee_service_account.json
|
5 |
+
md_service_token.txt
|
6 |
+
.env
|
7 |
+
.vscode
|
app.py
CHANGED
@@ -1,64 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import plotly.graph_objects as go
|
3 |
-
|
4 |
-
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
return fig
|
50 |
|
51 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
with gr.Row():
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
demo.launch()
|
|
|
1 |
+
import datetime
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
|
5 |
+
import duckdb
|
6 |
+
import ee
|
7 |
import gradio as gr
|
8 |
+
import pandas as pd
|
9 |
import plotly.graph_objects as go
|
10 |
+
import yaml
|
11 |
+
|
12 |
+
# Logging
|
13 |
+
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.DEBUG)
|
14 |
+
|
15 |
+
# Define constants
|
16 |
+
DATE = "2020-01-01"
|
17 |
+
YEAR = 2020
|
18 |
+
LOCATION = [-74.653370, 5.845328]
|
19 |
+
ROI_RADIUS = 20000
|
20 |
+
GEE_SERVICE_ACCOUNT = (
|
21 |
+
"climatebase-july-2023@ee-geospatialml-aquarry.iam.gserviceaccount.com"
|
22 |
+
)
|
23 |
+
GEE_SERVICE_ACCOUNT_CREDENTIALS_FILE = "ee_service_account.json"
|
24 |
+
INDICES_FILE = "indices.yaml"
|
25 |
+
START_YEAR = 2015
|
26 |
+
END_YEAR = 2022
|
27 |
+
|
28 |
+
|
29 |
+
class IndexGenerator:
|
30 |
+
"""
|
31 |
+
A class to generate indices and compute zonal means.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
centroid (tuple): The centroid coordinates (latitude, longitude) of the region of interest.
|
35 |
+
year (int): The year for which indices are generated.
|
36 |
+
roi_radius (int, optional): The radius (in meters) for creating a buffer around the centroid as the region of interest. Defaults to 20000.
|
37 |
+
project_name (str, optional): The name of the project. Defaults to "".
|
38 |
+
map (geemap.Map, optional): Map object for mapping. Defaults to None (i.e. no map created)
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
centroid,
|
44 |
+
roi_radius,
|
45 |
+
year,
|
46 |
+
indices_file,
|
47 |
+
project_name="",
|
48 |
+
map=None,
|
49 |
+
):
|
50 |
+
self.indices = self._load_indices(indices_file)
|
51 |
+
self.centroid = centroid
|
52 |
+
self.roi = ee.Geometry.Point(*centroid).buffer(roi_radius)
|
53 |
+
self.year = year
|
54 |
+
self.start_date = str(datetime.date(self.year, 1, 1))
|
55 |
+
self.end_date = str(datetime.date(self.year, 12, 31))
|
56 |
+
self.daterange = [self.start_date, self.end_date]
|
57 |
+
self.project_name = project_name
|
58 |
+
self.map = map
|
59 |
+
if self.map is not None:
|
60 |
+
self.show = True
|
61 |
+
else:
|
62 |
+
self.show = False
|
63 |
+
|
64 |
+
def _cloudfree(self, gee_path):
|
65 |
+
"""
|
66 |
+
Internal method to generate a cloud-free composite.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
gee_path (str): The path to the Google Earth Engine (GEE) image or image collection.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
ee.Image: The cloud-free composite clipped to the region of interest.
|
73 |
+
"""
|
74 |
+
# Load a raw Landsat ImageCollection for a single year.
|
75 |
+
collection = (
|
76 |
+
ee.ImageCollection(gee_path)
|
77 |
+
.filterDate(*self.daterange)
|
78 |
+
.filterBounds(self.roi)
|
79 |
+
)
|
80 |
+
|
81 |
+
# Create a cloud-free composite with custom parameters for cloud score threshold and percentile.
|
82 |
+
composite_cloudfree = ee.Algorithms.Landsat.simpleComposite(
|
83 |
+
**{"collection": collection, "percentile": 75, "cloudScoreRange": 5}
|
84 |
+
)
|
85 |
+
return composite_cloudfree.clip(self.roi)
|
86 |
+
|
87 |
+
def _load_indices(self, indices_file):
|
88 |
+
# Read index configurations
|
89 |
+
with open(indices_file, "r") as stream:
|
90 |
+
try:
|
91 |
+
return yaml.safe_load(stream)
|
92 |
+
except yaml.YAMLError as e:
|
93 |
+
logging.error(e)
|
94 |
+
return None
|
95 |
+
|
96 |
+
def show_map(self, map=None):
|
97 |
+
if map is not None:
|
98 |
+
self.map = map
|
99 |
+
self.show = True
|
100 |
+
|
101 |
+
def disable_map(self):
|
102 |
+
self.show = False
|
103 |
+
|
104 |
+
def generate_index(self, index_config):
|
105 |
+
"""
|
106 |
+
Generates an index based on the provided index configuration.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
index_config (dict): Configuration for generating the index.
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
ee.Image: The generated index clipped to the region of interest.
|
113 |
+
"""
|
114 |
+
match index_config["gee_type"]:
|
115 |
+
case "image":
|
116 |
+
dataset = ee.Image(index_config["gee_path"]).clip(self.roi)
|
117 |
+
if index_config.get("select"):
|
118 |
+
dataset = dataset.select(index_config["select"])
|
119 |
+
case "image_collection":
|
120 |
+
dataset = (
|
121 |
+
ee.ImageCollection(index_config["gee_path"])
|
122 |
+
.filterBounds(self.roi)
|
123 |
+
.map(lambda image: image.clip(self.roi))
|
124 |
+
.mean()
|
125 |
+
)
|
126 |
+
if index_config.get("select"):
|
127 |
+
dataset = dataset.select(index_config["select"])
|
128 |
+
case "feature_collection":
|
129 |
+
dataset = (
|
130 |
+
ee.Image()
|
131 |
+
.float()
|
132 |
+
.paint(
|
133 |
+
ee.FeatureCollection(index_config["gee_path"]),
|
134 |
+
index_config["select"],
|
135 |
+
)
|
136 |
+
.clip(self.roi)
|
137 |
+
)
|
138 |
+
case "algebraic":
|
139 |
+
image = self._cloudfree(index_config["gee_path"])
|
140 |
+
dataset = image.normalizedDifference(["B4", "B3"])
|
141 |
+
case _:
|
142 |
+
dataset = None
|
143 |
+
|
144 |
+
if not dataset:
|
145 |
+
raise Exception("Failed to generate dataset.")
|
146 |
+
if self.show and index_config.get("show"):
|
147 |
+
map.addLayer(dataset, index_config["viz"], index_config["name"])
|
148 |
+
logging.info(f"Generated index: {index_config['name']}")
|
149 |
+
return dataset
|
150 |
+
|
151 |
+
def zonal_mean_index(self, index_key):
|
152 |
+
index_config = self.indices[index_key]
|
153 |
+
dataset = self.generate_index(index_config)
|
154 |
+
# zm = self._zonal_mean(single, index_config.get('bandname') or 'constant')
|
155 |
+
out = dataset.reduceRegion(
|
156 |
+
**{
|
157 |
+
"reducer": ee.Reducer.mean(),
|
158 |
+
"geometry": self.roi,
|
159 |
+
"scale": 200, # map scale
|
160 |
+
}
|
161 |
+
).getInfo()
|
162 |
+
if index_config.get("bandname"):
|
163 |
+
return out[index_config.get("bandname")]
|
164 |
+
return out
|
165 |
+
|
166 |
+
def generate_composite_index_df(self, indices=[]):
|
167 |
+
data = {
|
168 |
+
"metric": indices,
|
169 |
+
"year": self.year,
|
170 |
+
"centroid": str(self.centroid),
|
171 |
+
"project_name": self.project_name,
|
172 |
+
"value": list(map(self.zonal_mean_index, indices)),
|
173 |
+
"area": self.roi.area().getInfo(), # m^2
|
174 |
+
"geojson": str(self.roi.getInfo()),
|
175 |
+
# to-do: coefficient
|
176 |
+
}
|
177 |
+
|
178 |
+
logging.info("data", data)
|
179 |
+
df = pd.DataFrame(data)
|
180 |
+
return df
|
181 |
+
|
182 |
+
|
183 |
+
def set_up_duckdb():
|
184 |
+
logging.info("set up duckdb")
|
185 |
+
# use `climatebase` db
|
186 |
+
if not os.getenv("motherduck_token"):
|
187 |
+
raise Exception(
|
188 |
+
"No motherduck token found. Please set the `motherduck_token` environment variable."
|
189 |
+
)
|
190 |
+
else:
|
191 |
+
con = duckdb.connect("md:climatebase")
|
192 |
+
con.sql("USE climatebase;")
|
193 |
+
|
194 |
+
# load extensions
|
195 |
+
con.sql("""INSTALL spatial; LOAD spatial;""")
|
196 |
+
|
197 |
+
return con
|
198 |
+
|
199 |
+
|
200 |
+
def authenticate_gee(gee_service_account, gee_service_account_credentials_file):
|
201 |
+
logging.info("authenticate_gee")
|
202 |
+
# to-do: alert if dataset filter date nan
|
203 |
+
credentials = ee.ServiceAccountCredentials(
|
204 |
+
gee_service_account, gee_service_account_credentials_file
|
205 |
)
|
206 |
+
ee.Initialize(credentials)
|
207 |
+
|
208 |
+
|
209 |
+
def load_indices(indices_file):
|
210 |
+
# Read index configurations
|
211 |
+
with open(indices_file, "r") as stream:
|
212 |
+
try:
|
213 |
+
return yaml.safe_load(stream)
|
214 |
+
except yaml.YAMLError as e:
|
215 |
+
logging.error(e)
|
216 |
+
return None
|
217 |
+
|
218 |
+
|
219 |
+
def create_dataframe(years, project_name):
|
220 |
+
dfs = []
|
221 |
+
logging.info(years)
|
222 |
+
indices = load_indices(INDICES_FILE)
|
223 |
+
for year in years:
|
224 |
+
logging.info(year)
|
225 |
+
ig = IndexGenerator(
|
226 |
+
centroid=LOCATION,
|
227 |
+
roi_radius=ROI_RADIUS,
|
228 |
+
year=year,
|
229 |
+
indices_file=INDICES_FILE,
|
230 |
+
project_name=project_name,
|
231 |
+
)
|
232 |
+
df = ig.generate_composite_index_df(list(indices.keys()))
|
233 |
+
dfs.append(df)
|
234 |
+
return pd.concat(dfs)
|
235 |
+
|
236 |
+
|
237 |
+
# def preview_table():
|
238 |
+
# con.sql("FROM bioindicator;").show()
|
239 |
+
|
240 |
+
# if __name__ == '__main__':
|
241 |
+
|
242 |
+
|
243 |
+
# Map = geemap.Map()
|
244 |
+
|
245 |
+
|
246 |
+
# # Create a cloud-free composite with custom parameters for cloud score threshold and percentile.
|
247 |
+
# composite_cloudfree = ee.Algorithms.Landsat.simpleComposite(**{
|
248 |
+
# 'collection': collection,
|
249 |
+
# 'percentile': 75,
|
250 |
+
# 'cloudScoreRange': 5
|
251 |
+
# })
|
252 |
+
|
253 |
+
# Map.addLayer(composite_cloudfree, {'bands': ['B4', 'B3', 'B2'], 'max': 128}, 'Custom TOA composite')
|
254 |
+
# Map.centerObject(roi, 14)
|
255 |
+
|
256 |
+
|
257 |
+
# ig = IndexGenerator(centroid=LOCATION, year=2015, indices_file=INDICES_FILE, project_name='Test Project', map=Map)
|
258 |
+
# dataset = ig.generate_index(indices['Air'])
|
259 |
+
|
260 |
+
# minMax = dataset.clip(roi).reduceRegion(
|
261 |
+
# geometry = roi,
|
262 |
+
# reducer = ee.Reducer.minMax(),
|
263 |
+
# scale= 3000,
|
264 |
+
# maxPixels= 10e3,
|
265 |
+
# )
|
266 |
+
|
267 |
+
|
268 |
+
# minMax.getInfo()
|
269 |
+
def calculate_biodiversity_score(start_year, end_year, project_name):
|
270 |
+
years = []
|
271 |
+
for year in range(start_year, end_year):
|
272 |
+
row_exists = con.sql(
|
273 |
+
f"SELECT COUNT(1) FROM bioindicator WHERE (year = {year} AND project_name = '{project_name}')"
|
274 |
+
).fetchall()[0][0]
|
275 |
+
if not row_exists:
|
276 |
+
years.append(year)
|
277 |
+
|
278 |
+
if len(years) > 0:
|
279 |
+
df = create_dataframe(years, project_name)
|
280 |
+
# con.sql('FROM df LIMIT 5').show()
|
281 |
+
|
282 |
+
# Write score table to `_temptable`
|
283 |
+
con.sql(
|
284 |
+
"CREATE OR REPLACE TABLE _temptable AS SELECT *, (value * area) AS score FROM (SELECT year, project_name, AVG(value) AS value, area FROM df GROUP BY year, project_name, area ORDER BY project_name)"
|
285 |
+
)
|
286 |
+
|
287 |
+
# Create `bioindicator` table IF NOT EXISTS.
|
288 |
+
con.sql(
|
289 |
+
"""
|
290 |
+
USE climatebase;
|
291 |
+
CREATE TABLE IF NOT EXISTS bioindicator (year BIGINT, project_name VARCHAR(255), value DOUBLE, area DOUBLE, score DOUBLE, CONSTRAINT unique_year_project_name UNIQUE (year, project_name));
|
292 |
+
"""
|
293 |
+
)
|
294 |
+
|
295 |
+
return con.sql(
|
296 |
+
f"SELECT * FROM bioindicator WHERE (year > {start_year} AND year <= {end_year} AND project_name = '{project_name}')"
|
297 |
+
).df()
|
298 |
+
|
299 |
+
|
300 |
+
def view_all():
|
301 |
+
logging.info("view_all")
|
302 |
+
return con.sql(f"SELECT * FROM bioindicator").df()
|
303 |
+
|
304 |
+
|
305 |
+
def push_to_md():
|
306 |
+
# UPSERT project record
|
307 |
+
con.sql(
|
308 |
+
"""
|
309 |
+
INSERT INTO bioindicator FROM _temptable
|
310 |
+
ON CONFLICT (year, project_name) DO UPDATE SET value = excluded.value;
|
311 |
+
"""
|
312 |
+
)
|
313 |
+
logging.info("upsert records into motherduck")
|
314 |
|
|
|
315 |
|
316 |
with gr.Blocks() as demo:
|
317 |
+
con = set_up_duckdb()
|
318 |
+
authenticate_gee(GEE_SERVICE_ACCOUNT, GEE_SERVICE_ACCOUNT_CREDENTIALS_FILE)
|
319 |
+
# Create circle buffer over point
|
320 |
+
roi = ee.Geometry.Point(*LOCATION).buffer(ROI_RADIUS)
|
321 |
+
|
322 |
+
# # Load a raw Landsat ImageCollection for a single year.
|
323 |
+
# start_date = str(datetime.date(YEAR, 1, 1))
|
324 |
+
# end_date = str(datetime.date(YEAR, 12, 31))
|
325 |
+
# collection = (
|
326 |
+
# ee.ImageCollection('LANDSAT/LC08/C02/T1')
|
327 |
+
# .filterDate(start_date, end_date)
|
328 |
+
# .filterBounds(roi)
|
329 |
+
# )
|
330 |
+
|
331 |
+
# indices = load_indices(INDICES_FILE)
|
332 |
+
# push_to_md(START_YEAR, END_YEAR, 'Test Project')
|
333 |
with gr.Column():
|
334 |
+
# map = gr.Plot().style()
|
335 |
+
with gr.Row():
|
336 |
+
start_year = gr.Number(value=2017, label="Start Year", precision=0)
|
337 |
+
end_year = gr.Number(value=2022, label="End Year", precision=0)
|
338 |
+
project_name = gr.Textbox(label="Project Name")
|
339 |
+
# boroughs = gr.CheckboxGroup(choices=["Queens", "Brooklyn", "Manhattan", "Bronx", "Staten Island"], value=["Queens", "Brooklyn"], label="Select Methodology:")
|
340 |
+
# btn = gr.Button(value="Update Filter")
|
341 |
with gr.Row():
|
342 |
+
calc_btn = gr.Button(value="Calculate!")
|
343 |
+
view_btn = gr.Button(value="View all")
|
344 |
+
save_btn = gr.Button(value="Save")
|
345 |
+
results_df = gr.Dataframe(
|
346 |
+
headers=["Year", "Project Name", "Score"],
|
347 |
+
datatype=["number", "str", "number"],
|
348 |
+
label="Biodiversity scores by year",
|
349 |
+
)
|
350 |
+
# demo.load(filter_map, [min_price, max_price, boroughs], map)
|
351 |
+
# btn.click(filter_map, [min_price, max_price, boroughs], map)
|
352 |
+
calc_btn.click(
|
353 |
+
calculate_biodiversity_score,
|
354 |
+
inputs=[start_year, end_year, project_name],
|
355 |
+
outputs=results_df,
|
356 |
+
)
|
357 |
+
view_btn.click(view_all, outputs=results_df)
|
358 |
+
save_btn.click(push_to_md)
|
359 |
|
360 |
demo.launch()
|
indices.yaml
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
Water:
|
3 |
+
name: Water
|
4 |
+
roi: ''
|
5 |
+
gee_path: JRC/GSW1_1/GlobalSurfaceWater
|
6 |
+
gee_type: image
|
7 |
+
viz:
|
8 |
+
min: 0
|
9 |
+
max: 100
|
10 |
+
palette:
|
11 |
+
- ffffff
|
12 |
+
- ffbbbb
|
13 |
+
- 0000ff
|
14 |
+
bandname: occurrence
|
15 |
+
select: occurrence
|
16 |
+
show: true
|
17 |
+
Protected:
|
18 |
+
name: Protected
|
19 |
+
roi: ''
|
20 |
+
gee_path: WCMC/WDPA/current/polygons
|
21 |
+
gee_type: feature_collection
|
22 |
+
viz:
|
23 |
+
palette:
|
24 |
+
- 2ed033
|
25 |
+
- 5aff05
|
26 |
+
- 67b9ff
|
27 |
+
- 5844ff
|
28 |
+
- 0a7618
|
29 |
+
- 2c05ff
|
30 |
+
min: 0
|
31 |
+
max: 1550000
|
32 |
+
opacity: 0.8
|
33 |
+
select: REP_AREA
|
34 |
+
bandname: constant
|
35 |
+
show: true
|
36 |
+
Air:
|
37 |
+
name: Air
|
38 |
+
roi: ''
|
39 |
+
gee_path: COPERNICUS/S5P/OFFL/L3_AER_AI
|
40 |
+
gee_type: image_collection
|
41 |
+
viz:
|
42 |
+
min: -1
|
43 |
+
max: 2
|
44 |
+
palette:
|
45 |
+
- black
|
46 |
+
- blue
|
47 |
+
- purple
|
48 |
+
- cyan
|
49 |
+
- green
|
50 |
+
- yellow
|
51 |
+
- red
|
52 |
+
bandname: absorbing_aerosol_index
|
53 |
+
select: absorbing_aerosol_index
|
54 |
+
dates: false
|
55 |
+
show: false
|
56 |
+
Soil:
|
57 |
+
name: Soil
|
58 |
+
roi: ''
|
59 |
+
gee_path: OpenLandMap/SOL/SOL_ORGANIC-CARBON_USDA-6A1C_M/v02
|
60 |
+
gee_type: image
|
61 |
+
viz:
|
62 |
+
bands:
|
63 |
+
- b200
|
64 |
+
min: 0
|
65 |
+
max: 12
|
66 |
+
palette:
|
67 |
+
- ffffa0
|
68 |
+
- f7fcb9
|
69 |
+
- d9f0a3
|
70 |
+
- addd8e
|
71 |
+
- 78c679
|
72 |
+
- 41ab5d
|
73 |
+
- '238443'
|
74 |
+
- 005b29
|
75 |
+
- 004b29
|
76 |
+
- 012b13
|
77 |
+
- 00120b
|
78 |
+
select: b0
|
79 |
+
bandname: b0
|
80 |
+
show: false
|
81 |
+
Temperature:
|
82 |
+
name: Temperature
|
83 |
+
roi: ''
|
84 |
+
gee_path: MODIS/061/MYD21C1
|
85 |
+
gee_type: image_collection
|
86 |
+
viz:
|
87 |
+
min: 216
|
88 |
+
max: 348
|
89 |
+
palette:
|
90 |
+
- '040274'
|
91 |
+
- '040281'
|
92 |
+
- 0502a3
|
93 |
+
- 0502b8
|
94 |
+
- 0502ce
|
95 |
+
- 0502e6
|
96 |
+
- 0602ff
|
97 |
+
- 235cb1
|
98 |
+
- 307ef3
|
99 |
+
- 269db1
|
100 |
+
- 30c8e2
|
101 |
+
- 32d3ef
|
102 |
+
- 3be285
|
103 |
+
- 3ff38f
|
104 |
+
- 86e26f
|
105 |
+
- 3ae237
|
106 |
+
- b5e22e
|
107 |
+
- d6e21f
|
108 |
+
- fff705
|
109 |
+
- ffd611
|
110 |
+
- ffb613
|
111 |
+
- ff8b13
|
112 |
+
- ff6e08
|
113 |
+
- ff500d
|
114 |
+
- ff0000
|
115 |
+
- de0101
|
116 |
+
- c21301
|
117 |
+
- a71001
|
118 |
+
- '911003'
|
119 |
+
select: LST_Day
|
120 |
+
bandname: LST_Day
|
121 |
+
dates: true
|
122 |
+
show: true
|
123 |
+
Habitat:
|
124 |
+
name: Habitat
|
125 |
+
roi: ''
|
126 |
+
gee_path: projects/sat-io/open-datasets/IUCN_HABITAT/iucn_habitatclassification_composite_lvl2_ver004
|
127 |
+
gee_type: image
|
128 |
+
viz: {}
|
129 |
+
bandname: comp_first
|
130 |
+
show: true
|
131 |
+
NDVI:
|
132 |
+
name: NDVI
|
133 |
+
roi: ''
|
134 |
+
gee_path: LANDSAT/LC08/C02/T1
|
135 |
+
gee_type: algebraic
|
136 |
+
normalized_difference:
|
137 |
+
- B4
|
138 |
+
- B3
|
139 |
+
viz:
|
140 |
+
palette:
|
141 |
+
- "#d73027"
|
142 |
+
- "#f46d43"
|
143 |
+
- "#fdae61"
|
144 |
+
- "#fee08b"
|
145 |
+
- "#d9ef8b"
|
146 |
+
- "#a6d96a"
|
147 |
+
- "#66bd63"
|
148 |
+
- "#1a9850"
|
149 |
+
bandname: nd
|
150 |
+
NDWI:
|
151 |
+
name: NDWI
|
152 |
+
roi: ''
|
153 |
+
gee_path: LANDSAT/LC08/C02/T1
|
154 |
+
gee_type: algebraic
|
155 |
+
normalized_difference:
|
156 |
+
- B3
|
157 |
+
- B5
|
158 |
+
viz:
|
159 |
+
palette:
|
160 |
+
- "#ece7f2"
|
161 |
+
- "#d0d1e6"
|
162 |
+
- "#a6bddb"
|
163 |
+
- "#74a9cf"
|
164 |
+
- "#3690c0"
|
165 |
+
- "#0570b0"
|
166 |
+
- "#045a8d"
|
167 |
+
- "#023858"
|
168 |
+
bandname: nd
|
169 |
+
show: true
|
requirements.txt
CHANGED
@@ -5,4 +5,3 @@ duckdb==0.8.1
|
|
5 |
geemap
|
6 |
segment-geospatial
|
7 |
geojson
|
8 |
-
yaml
|
|
|
5 |
geemap
|
6 |
segment-geospatial
|
7 |
geojson
|
|