BiRefNet_demo / dataset.py
ZhengPeng7's picture
Initialization on my BiRefNet online demo.
81b1a0e
import os
import cv2
from tqdm import tqdm
from PIL import Image
from torch.utils import data
from torchvision import transforms
from preproc import preproc
from config import Config
Image.MAX_IMAGE_PIXELS = None # remove DecompressionBombWarning
config = Config()
_class_labels_TR_sorted = 'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
class MyData(data.Dataset):
def __init__(self, data_root, image_size, is_train=True):
self.size_train = image_size
self.size_test = image_size
self.keep_size = not config.size
self.data_size = (config.size, config.size)
self.is_train = is_train
self.load_all = config.load_all
self.device = config.device
self.dataset = data_root.replace('\\', '/').split('/')[-1]
if self.is_train and config.auxiliary_classification:
self.cls_name2id = {_name: _id for _id, _name in enumerate(class_labels_TR_sorted)}
self.transform_image = transforms.Compose([
transforms.Resize(self.data_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
][self.load_all or self.keep_size:])
self.transform_label = transforms.Compose([
transforms.Resize(self.data_size),
transforms.ToTensor(),
][self.load_all or self.keep_size:])
## 'im' and 'gt' need modifying
image_root = os.path.join(data_root, 'im')
self.image_paths = [os.path.join(image_root, p) for p in os.listdir(image_root)]
self.label_paths = [p.replace('/im/', '/gt/').replace('.jpg', '.png') for p in self.image_paths]
if self.load_all:
self.images_loaded, self.labels_loaded = [], []
self.class_labels_loaded = []
# for image_path, label_path in zip(self.image_paths, self.label_paths):
for image_path, label_path in tqdm(zip(self.image_paths, self.label_paths), total=len(self.image_paths)):
_image = cv2.imread(image_path)
_label = cv2.imread(label_path, cv2.IMREAD_GRAYSCALE)
if not self.keep_size:
_image_rs = cv2.resize(_image, (config.size, config.size), interpolation=cv2.INTER_LINEAR)
_label_rs = cv2.resize(_label, (config.size, config.size), interpolation=cv2.INTER_LINEAR)
self.images_loaded.append(
Image.fromarray(cv2.cvtColor(_image_rs, cv2.COLOR_BGR2RGB)).convert('RGB')
)
self.labels_loaded.append(
Image.fromarray(_label_rs).convert('L')
)
self.class_labels_loaded.append(
self.cls_name2id[label_path.split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
)
def __getitem__(self, index):
if self.load_all:
image = self.images_loaded[index]
label = self.labels_loaded[index]
class_label = self.class_labels_loaded[index] if self.is_train and config.auxiliary_classification else -1
else:
image = Image.open(self.image_paths[index]).convert('RGB')
label = Image.open(self.label_paths[index]).convert('L')
class_label = self.cls_name2id[self.label_paths[index].split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
# loading image and label
if self.is_train:
image, label = preproc(image, label, preproc_methods=config.preproc_methods)
# else:
# if _label.shape[0] > 2048 or _label.shape[1] > 2048:
# _image = cv2.resize(_image, (2048, 2048), interpolation=cv2.INTER_LINEAR)
# _label = cv2.resize(_label, (2048, 2048), interpolation=cv2.INTER_LINEAR)
image, label = self.transform_image(image), self.transform_label(label)
if self.is_train:
return image, label, class_label
else:
return image, label, self.label_paths[index]
def __len__(self):
return len(self.image_paths)