Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# | |
# SelfTest/PublicKey/test_RSA.py: Self-test for the RSA primitive | |
# | |
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net> | |
# | |
# =================================================================== | |
# The contents of this file are dedicated to the public domain. To | |
# the extent that dedication to the public domain is not available, | |
# everyone is granted a worldwide, perpetual, royalty-free, | |
# non-exclusive license to exercise all rights associated with the | |
# contents of this file for any purpose whatsoever. | |
# No rights are reserved. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# =================================================================== | |
"""Self-test suite for Crypto.PublicKey.RSA""" | |
__revision__ = "$Id$" | |
import os | |
import pickle | |
from pickle import PicklingError | |
from Crypto.Util.py3compat import * | |
import unittest | |
from Crypto.SelfTest.st_common import list_test_cases, a2b_hex, b2a_hex | |
class RSATest(unittest.TestCase): | |
# Test vectors from "RSA-OAEP and RSA-PSS test vectors (.zip file)" | |
# ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip | |
# See RSADSI's PKCS#1 page at | |
# http://www.rsa.com/rsalabs/node.asp?id=2125 | |
# from oaep-int.txt | |
# TODO: PyCrypto treats the message as starting *after* the leading "00" | |
# TODO: That behaviour should probably be changed in the future. | |
plaintext = """ | |
eb 7a 19 ac e9 e3 00 63 50 e3 29 50 4b 45 e2 | |
ca 82 31 0b 26 dc d8 7d 5c 68 f1 ee a8 f5 52 67 | |
c3 1b 2e 8b b4 25 1f 84 d7 e0 b2 c0 46 26 f5 af | |
f9 3e dc fb 25 c9 c2 b3 ff 8a e1 0e 83 9a 2d db | |
4c dc fe 4f f4 77 28 b4 a1 b7 c1 36 2b aa d2 9a | |
b4 8d 28 69 d5 02 41 21 43 58 11 59 1b e3 92 f9 | |
82 fb 3e 87 d0 95 ae b4 04 48 db 97 2f 3a c1 4f | |
7b c2 75 19 52 81 ce 32 d2 f1 b7 6d 4d 35 3e 2d | |
""" | |
ciphertext = """ | |
12 53 e0 4d c0 a5 39 7b b4 4a 7a b8 7e 9b f2 a0 | |
39 a3 3d 1e 99 6f c8 2a 94 cc d3 00 74 c9 5d f7 | |
63 72 20 17 06 9e 52 68 da 5d 1c 0b 4f 87 2c f6 | |
53 c1 1d f8 23 14 a6 79 68 df ea e2 8d ef 04 bb | |
6d 84 b1 c3 1d 65 4a 19 70 e5 78 3b d6 eb 96 a0 | |
24 c2 ca 2f 4a 90 fe 9f 2e f5 c9 c1 40 e5 bb 48 | |
da 95 36 ad 87 00 c8 4f c9 13 0a de a7 4e 55 8d | |
51 a7 4d df 85 d8 b5 0d e9 68 38 d6 06 3e 09 55 | |
""" | |
modulus = """ | |
bb f8 2f 09 06 82 ce 9c 23 38 ac 2b 9d a8 71 f7 | |
36 8d 07 ee d4 10 43 a4 40 d6 b6 f0 74 54 f5 1f | |
b8 df ba af 03 5c 02 ab 61 ea 48 ce eb 6f cd 48 | |
76 ed 52 0d 60 e1 ec 46 19 71 9d 8a 5b 8b 80 7f | |
af b8 e0 a3 df c7 37 72 3e e6 b4 b7 d9 3a 25 84 | |
ee 6a 64 9d 06 09 53 74 88 34 b2 45 45 98 39 4e | |
e0 aa b1 2d 7b 61 a5 1f 52 7a 9a 41 f6 c1 68 7f | |
e2 53 72 98 ca 2a 8f 59 46 f8 e5 fd 09 1d bd cb | |
""" | |
e = 0x11 # public exponent | |
prime_factor = """ | |
c9 7f b1 f0 27 f4 53 f6 34 12 33 ea aa d1 d9 35 | |
3f 6c 42 d0 88 66 b1 d0 5a 0f 20 35 02 8b 9d 86 | |
98 40 b4 16 66 b4 2e 92 ea 0d a3 b4 32 04 b5 cf | |
ce 33 52 52 4d 04 16 a5 a4 41 e7 00 af 46 15 03 | |
""" | |
def setUp(self): | |
global RSA, Random, bytes_to_long | |
from Crypto.PublicKey import RSA | |
from Crypto import Random | |
from Crypto.Util.number import bytes_to_long, inverse | |
self.n = bytes_to_long(a2b_hex(self.modulus)) | |
self.p = bytes_to_long(a2b_hex(self.prime_factor)) | |
# Compute q, d, and u from n, e, and p | |
self.q = self.n // self.p | |
self.d = inverse(self.e, (self.p-1)*(self.q-1)) | |
self.u = inverse(self.p, self.q) # u = e**-1 (mod q) | |
self.rsa = RSA | |
def test_generate_1arg(self): | |
"""RSA (default implementation) generated key (1 argument)""" | |
rsaObj = self.rsa.generate(1024) | |
self._check_private_key(rsaObj) | |
self._exercise_primitive(rsaObj) | |
pub = rsaObj.public_key() | |
self._check_public_key(pub) | |
self._exercise_public_primitive(rsaObj) | |
def test_generate_2arg(self): | |
"""RSA (default implementation) generated key (2 arguments)""" | |
rsaObj = self.rsa.generate(1024, Random.new().read) | |
self._check_private_key(rsaObj) | |
self._exercise_primitive(rsaObj) | |
pub = rsaObj.public_key() | |
self._check_public_key(pub) | |
self._exercise_public_primitive(rsaObj) | |
def test_generate_3args(self): | |
rsaObj = self.rsa.generate(1024, Random.new().read,e=65537) | |
self._check_private_key(rsaObj) | |
self._exercise_primitive(rsaObj) | |
pub = rsaObj.public_key() | |
self._check_public_key(pub) | |
self._exercise_public_primitive(rsaObj) | |
self.assertEqual(65537,rsaObj.e) | |
def test_construct_2tuple(self): | |
"""RSA (default implementation) constructed key (2-tuple)""" | |
pub = self.rsa.construct((self.n, self.e)) | |
self._check_public_key(pub) | |
self._check_encryption(pub) | |
def test_construct_3tuple(self): | |
"""RSA (default implementation) constructed key (3-tuple)""" | |
rsaObj = self.rsa.construct((self.n, self.e, self.d)) | |
self._check_encryption(rsaObj) | |
self._check_decryption(rsaObj) | |
def test_construct_4tuple(self): | |
"""RSA (default implementation) constructed key (4-tuple)""" | |
rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p)) | |
self._check_encryption(rsaObj) | |
self._check_decryption(rsaObj) | |
def test_construct_5tuple(self): | |
"""RSA (default implementation) constructed key (5-tuple)""" | |
rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p, self.q)) | |
self._check_private_key(rsaObj) | |
self._check_encryption(rsaObj) | |
self._check_decryption(rsaObj) | |
def test_construct_6tuple(self): | |
"""RSA (default implementation) constructed key (6-tuple)""" | |
rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p, self.q, self.u)) | |
self._check_private_key(rsaObj) | |
self._check_encryption(rsaObj) | |
self._check_decryption(rsaObj) | |
def test_construct_bad_key2(self): | |
tup = (self.n, 1) | |
self.assertRaises(ValueError, self.rsa.construct, tup) | |
# An even modulus is wrong | |
tup = (self.n+1, self.e) | |
self.assertRaises(ValueError, self.rsa.construct, tup) | |
def test_construct_bad_key3(self): | |
tup = (self.n, self.e, self.d+1) | |
self.assertRaises(ValueError, self.rsa.construct, tup) | |
def test_construct_bad_key5(self): | |
tup = (self.n, self.e, self.d, self.p, self.p) | |
self.assertRaises(ValueError, self.rsa.construct, tup) | |
tup = (self.p*self.p, self.e, self.p, self.p) | |
self.assertRaises(ValueError, self.rsa.construct, tup) | |
tup = (self.p*self.p, 3, self.p, self.q) | |
self.assertRaises(ValueError, self.rsa.construct, tup) | |
def test_construct_bad_key6(self): | |
tup = (self.n, self.e, self.d, self.p, self.q, 10) | |
self.assertRaises(ValueError, self.rsa.construct, tup) | |
from Crypto.Util.number import inverse | |
tup = (self.n, self.e, self.d, self.p, self.q, inverse(self.q, self.p)) | |
self.assertRaises(ValueError, self.rsa.construct, tup) | |
def test_factoring(self): | |
rsaObj = self.rsa.construct([self.n, self.e, self.d]) | |
self.assertTrue(rsaObj.p==self.p or rsaObj.p==self.q) | |
self.assertTrue(rsaObj.q==self.p or rsaObj.q==self.q) | |
self.assertTrue(rsaObj.q*rsaObj.p == self.n) | |
self.assertRaises(ValueError, self.rsa.construct, [self.n, self.e, self.n-1]) | |
def test_repr(self): | |
rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p, self.q)) | |
repr(rsaObj) | |
def test_serialization(self): | |
"""RSA keys are unpickable""" | |
rsa_key = self.rsa.generate(1024) | |
self.assertRaises(PicklingError, pickle.dumps, rsa_key) | |
def test_raw_rsa_boundary(self): | |
# The argument of every RSA raw operation (encrypt/decrypt) must be | |
# non-negative and no larger than the modulus | |
rsa_obj = self.rsa.generate(1024) | |
self.assertRaises(ValueError, rsa_obj._decrypt, rsa_obj.n) | |
self.assertRaises(ValueError, rsa_obj._encrypt, rsa_obj.n) | |
self.assertRaises(ValueError, rsa_obj._decrypt, -1) | |
self.assertRaises(ValueError, rsa_obj._encrypt, -1) | |
def test_size(self): | |
pub = self.rsa.construct((self.n, self.e)) | |
self.assertEqual(pub.size_in_bits(), 1024) | |
self.assertEqual(pub.size_in_bytes(), 128) | |
def _check_private_key(self, rsaObj): | |
from Crypto.Math.Numbers import Integer | |
# Check capabilities | |
self.assertEqual(1, rsaObj.has_private()) | |
# Sanity check key data | |
self.assertEqual(rsaObj.n, rsaObj.p * rsaObj.q) # n = pq | |
lcm = int(Integer(rsaObj.p-1).lcm(rsaObj.q-1)) | |
self.assertEqual(1, rsaObj.d * rsaObj.e % lcm) # ed = 1 (mod LCM(p-1, q-1)) | |
self.assertEqual(1, rsaObj.p * rsaObj.u % rsaObj.q) # pu = 1 (mod q) | |
self.assertEqual(1, rsaObj.p > 1) # p > 1 | |
self.assertEqual(1, rsaObj.q > 1) # q > 1 | |
self.assertEqual(1, rsaObj.e > 1) # e > 1 | |
self.assertEqual(1, rsaObj.d > 1) # d > 1 | |
self.assertEqual(rsaObj.u, rsaObj.invp) | |
self.assertEqual(1, rsaObj.q * rsaObj.invq % rsaObj.p) | |
def _check_public_key(self, rsaObj): | |
ciphertext = a2b_hex(self.ciphertext) | |
# Check capabilities | |
self.assertEqual(0, rsaObj.has_private()) | |
# Check rsaObj.[ne] -> rsaObj.[ne] mapping | |
self.assertEqual(rsaObj.n, rsaObj.n) | |
self.assertEqual(rsaObj.e, rsaObj.e) | |
# Check that private parameters are all missing | |
self.assertEqual(0, hasattr(rsaObj, 'd')) | |
self.assertEqual(0, hasattr(rsaObj, 'p')) | |
self.assertEqual(0, hasattr(rsaObj, 'q')) | |
self.assertEqual(0, hasattr(rsaObj, 'u')) | |
# Sanity check key data | |
self.assertEqual(1, rsaObj.e > 1) # e > 1 | |
# Public keys should not be able to sign or decrypt | |
self.assertRaises(TypeError, rsaObj._decrypt, | |
bytes_to_long(ciphertext)) | |
# Check __eq__ and __ne__ | |
self.assertEqual(rsaObj.public_key() == rsaObj.public_key(),True) # assert_ | |
self.assertEqual(rsaObj.public_key() != rsaObj.public_key(),False) # assertFalse | |
self.assertEqual(rsaObj.publickey(), rsaObj.public_key()) | |
def _exercise_primitive(self, rsaObj): | |
# Since we're using a randomly-generated key, we can't check the test | |
# vector, but we can make sure encryption and decryption are inverse | |
# operations. | |
ciphertext = bytes_to_long(a2b_hex(self.ciphertext)) | |
# Test decryption | |
plaintext = rsaObj._decrypt(ciphertext) | |
# Test encryption (2 arguments) | |
new_ciphertext2 = rsaObj._encrypt(plaintext) | |
self.assertEqual(ciphertext, new_ciphertext2) | |
def _exercise_public_primitive(self, rsaObj): | |
plaintext = a2b_hex(self.plaintext) | |
# Test encryption (2 arguments) | |
new_ciphertext2 = rsaObj._encrypt(bytes_to_long(plaintext)) | |
def _check_encryption(self, rsaObj): | |
plaintext = a2b_hex(self.plaintext) | |
ciphertext = a2b_hex(self.ciphertext) | |
# Test encryption | |
new_ciphertext2 = rsaObj._encrypt(bytes_to_long(plaintext)) | |
self.assertEqual(bytes_to_long(ciphertext), new_ciphertext2) | |
def _check_decryption(self, rsaObj): | |
plaintext = bytes_to_long(a2b_hex(self.plaintext)) | |
ciphertext = bytes_to_long(a2b_hex(self.ciphertext)) | |
# Test plain decryption | |
new_plaintext = rsaObj._decrypt(ciphertext) | |
self.assertEqual(plaintext, new_plaintext) | |
def get_tests(config={}): | |
tests = [] | |
tests += list_test_cases(RSATest) | |
return tests | |
if __name__ == '__main__': | |
suite = lambda: unittest.TestSuite(get_tests()) | |
unittest.main(defaultTest='suite') | |
# vim:set ts=4 sw=4 sts=4 expandtab: | |