Spaces:
Starting
on
L4
Starting
on
L4
import gradio as gr | |
import plotly.graph_objects as go | |
import torch | |
from tqdm.auto import tqdm | |
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config | |
from point_e.diffusion.sampler import PointCloudSampler | |
from point_e.models.download import load_checkpoint | |
from point_e.models.configs import MODEL_CONFIGS, model_from_config | |
from point_e.util.plotting import plot_point_cloud | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
print('creating base model...') | |
base_name = 'base40M-textvec' | |
base_model = model_from_config(MODEL_CONFIGS[base_name], device) | |
base_model.eval() | |
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name]) | |
print('creating upsample model...') | |
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) | |
upsampler_model.eval() | |
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) | |
print('downloading base checkpoint...') | |
base_model.load_state_dict(load_checkpoint(base_name, device)) | |
print('downloading upsampler checkpoint...') | |
upsampler_model.load_state_dict(load_checkpoint('upsample', device)) | |
sampler = PointCloudSampler( | |
device=device, | |
models=[base_model, upsampler_model], | |
diffusions=[base_diffusion, upsampler_diffusion], | |
num_points=[1024, 4096 - 1024], | |
aux_channels=['R', 'G', 'B'], | |
guidance_scale=[3.0, 0.0], | |
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all | |
) | |
def inference(prompt): | |
samples = None | |
for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[prompt])): | |
samples = x | |
pc = sampler.output_to_point_clouds(samples)[0] | |
pc = sampler.output_to_point_clouds(samples)[0] | |
colors=(238, 75, 43) | |
fig = go.Figure( | |
data=[ | |
go.Scatter3d( | |
x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2], | |
mode='markers', | |
marker=dict( | |
size=2, | |
color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])], | |
) | |
) | |
], | |
layout=dict( | |
scene=dict( | |
xaxis=dict(visible=False), | |
yaxis=dict(visible=False), | |
zaxis=dict(visible=False) | |
) | |
), | |
) | |
return fig | |
demo = gr.Interface( | |
fn=inference, | |
inputs="text", | |
outputs=gr.Plot(), | |
examples=[ | |
["a red motorcycle"], | |
["a RED pumpkin"], | |
["a yellow rubber duck"] | |
], | |
title="Point-E demo: text to 3D", | |
description="Generated 3D Point Clouds with [Point-E](https://github.com/openai/point-e/tree/main). This demo uses a small, worse quality text-to-3D model to produce 3D point clouds directly from text descriptions." | |
) | |
demo.launch(debug=True) | |