Jong Wook Kim
using sys.executable for subprocess calls (fixes #8)
6d90da5
"""Training code for the detector model"""
import argparse
import os
import subprocess
import sys
from itertools import count
from multiprocessing import Process
import torch
import torch.distributed as dist
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.optim import Adam
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
from tqdm import tqdm
from transformers import *
from .dataset import Corpus, EncodedDataset
from .download import download
from .utils import summary, distributed
def setup_distributed(port=29500):
if not dist.is_available() or not torch.cuda.is_available() or torch.cuda.device_count() <= 1:
return 0, 1
if 'MPIR_CVAR_CH3_INTERFACE_HOSTNAME' in os.environ:
from mpi4py import MPI
mpi_rank = MPI.COMM_WORLD.Get_rank()
mpi_size = MPI.COMM_WORLD.Get_size()
os.environ["MASTER_ADDR"] = '127.0.0.1'
os.environ["MASTER_PORT"] = str(port)
dist.init_process_group(backend="nccl", world_size=mpi_size, rank=mpi_rank)
return mpi_rank, mpi_size
dist.init_process_group(backend="nccl", init_method="env://")
return dist.get_rank(), dist.get_world_size()
def load_datasets(data_dir, real_dataset, fake_dataset, tokenizer, batch_size,
max_sequence_length, random_sequence_length, epoch_size=None, token_dropout=None, seed=None):
if fake_dataset == 'TWO':
download(real_dataset, 'xl-1542M', 'xl-1542M-nucleus', data_dir=data_dir)
elif fake_dataset == 'THREE':
download(real_dataset, 'xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus', data_dir=data_dir)
else:
download(real_dataset, fake_dataset, data_dir=data_dir)
real_corpus = Corpus(real_dataset, data_dir=data_dir)
if fake_dataset == "TWO":
real_train, real_valid = real_corpus.train * 2, real_corpus.valid * 2
fake_corpora = [Corpus(name, data_dir=data_dir) for name in ['xl-1542M', 'xl-1542M-nucleus']]
fake_train = sum([corpus.train for corpus in fake_corpora], [])
fake_valid = sum([corpus.valid for corpus in fake_corpora], [])
elif fake_dataset == "THREE":
real_train, real_valid = real_corpus.train * 3, real_corpus.valid * 3
fake_corpora = [Corpus(name, data_dir=data_dir) for name in
['xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus']]
fake_train = sum([corpus.train for corpus in fake_corpora], [])
fake_valid = sum([corpus.valid for corpus in fake_corpora], [])
else:
fake_corpus = Corpus(fake_dataset, data_dir=data_dir)
real_train, real_valid = real_corpus.train, real_corpus.valid
fake_train, fake_valid = fake_corpus.train, fake_corpus.valid
Sampler = DistributedSampler if distributed() and dist.get_world_size() > 1 else RandomSampler
min_sequence_length = 10 if random_sequence_length else None
train_dataset = EncodedDataset(real_train, fake_train, tokenizer, max_sequence_length, min_sequence_length,
epoch_size, token_dropout, seed)
train_loader = DataLoader(train_dataset, batch_size, sampler=Sampler(train_dataset), num_workers=0)
validation_dataset = EncodedDataset(real_valid, fake_valid, tokenizer)
validation_loader = DataLoader(validation_dataset, batch_size=1, sampler=Sampler(validation_dataset))
return train_loader, validation_loader
def accuracy_sum(logits, labels):
if list(logits.shape) == list(labels.shape) + [2]:
# 2-d outputs
classification = (logits[..., 0] < logits[..., 1]).long().flatten()
else:
classification = (logits > 0).long().flatten()
assert classification.shape == labels.shape
return (classification == labels).float().sum().item()
def train(model: nn.Module, optimizer, device: str, loader: DataLoader, desc='Train'):
model.train()
train_accuracy = 0
train_epoch_size = 0
train_loss = 0
with tqdm(loader, desc=desc, disable=distributed() and dist.get_rank() > 0) as loop:
for texts, masks, labels in loop:
texts, masks, labels = texts.to(device), masks.to(device), labels.to(device)
batch_size = texts.shape[0]
optimizer.zero_grad()
loss, logits = model(texts, attention_mask=masks, labels=labels)
loss.backward()
optimizer.step()
batch_accuracy = accuracy_sum(logits, labels)
train_accuracy += batch_accuracy
train_epoch_size += batch_size
train_loss += loss.item() * batch_size
loop.set_postfix(loss=loss.item(), acc=train_accuracy / train_epoch_size)
return {
"train/accuracy": train_accuracy,
"train/epoch_size": train_epoch_size,
"train/loss": train_loss
}
def validate(model: nn.Module, device: str, loader: DataLoader, votes=1, desc='Validation'):
model.eval()
validation_accuracy = 0
validation_epoch_size = 0
validation_loss = 0
records = [record for v in range(votes) for record in tqdm(loader, desc=f'Preloading data ... {v}',
disable=dist.is_available() and dist.get_rank() > 0)]
records = [[records[v * len(loader) + i] for v in range(votes)] for i in range(len(loader))]
with tqdm(records, desc=desc, disable=distributed() and dist.get_rank() > 0) as loop, torch.no_grad():
for example in loop:
losses = []
logit_votes = []
for texts, masks, labels in example:
texts, masks, labels = texts.to(device), masks.to(device), labels.to(device)
batch_size = texts.shape[0]
loss, logits = model(texts, attention_mask=masks, labels=labels)
losses.append(loss)
logit_votes.append(logits)
loss = torch.stack(losses).mean(dim=0)
logits = torch.stack(logit_votes).mean(dim=0)
batch_accuracy = accuracy_sum(logits, labels)
validation_accuracy += batch_accuracy
validation_epoch_size += batch_size
validation_loss += loss.item() * batch_size
loop.set_postfix(loss=loss.item(), acc=validation_accuracy / validation_epoch_size)
return {
"validation/accuracy": validation_accuracy,
"validation/epoch_size": validation_epoch_size,
"validation/loss": validation_loss
}
def _all_reduce_dict(d, device):
# wrap in tensor and use reduce to gpu0 tensor
output_d = {}
for (key, value) in sorted(d.items()):
tensor_input = torch.tensor([[value]]).to(device)
torch.distributed.all_reduce(tensor_input)
output_d[key] = tensor_input.item()
return output_d
def run(max_epochs=None,
device=None,
batch_size=24,
max_sequence_length=128,
random_sequence_length=False,
epoch_size=None,
seed=None,
data_dir='data',
real_dataset='webtext',
fake_dataset='xl-1542M-nucleus',
token_dropout=None,
large=False,
learning_rate=2e-5,
weight_decay=0,
**kwargs):
args = locals()
rank, world_size = setup_distributed()
if device is None:
device = f'cuda:{rank}' if torch.cuda.is_available() else 'cpu'
print('rank:', rank, 'world_size:', world_size, 'device:', device)
import torch.distributed as dist
if distributed() and rank > 0:
dist.barrier()
model_name = 'roberta-large' if large else 'roberta-base'
tokenization_utils.logger.setLevel('ERROR')
tokenizer = RobertaTokenizer.from_pretrained(model_name)
model = RobertaForSequenceClassification.from_pretrained(model_name).to(device)
if rank == 0:
summary(model)
if distributed():
dist.barrier()
if world_size > 1:
model = DistributedDataParallel(model, [rank], output_device=rank, find_unused_parameters=True)
train_loader, validation_loader = load_datasets(data_dir, real_dataset, fake_dataset, tokenizer, batch_size,
max_sequence_length, random_sequence_length, epoch_size,
token_dropout, seed)
optimizer = Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
epoch_loop = count(1) if max_epochs is None else range(1, max_epochs + 1)
logdir = os.environ.get("OPENAI_LOGDIR", "logs")
os.makedirs(logdir, exist_ok=True)
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(logdir) if rank == 0 else None
best_validation_accuracy = 0
for epoch in epoch_loop:
if world_size > 1:
train_loader.sampler.set_epoch(epoch)
validation_loader.sampler.set_epoch(epoch)
train_metrics = train(model, optimizer, device, train_loader, f'Epoch {epoch}')
validation_metrics = validate(model, device, validation_loader)
combined_metrics = _all_reduce_dict({**validation_metrics, **train_metrics}, device)
combined_metrics["train/accuracy"] /= combined_metrics["train/epoch_size"]
combined_metrics["train/loss"] /= combined_metrics["train/epoch_size"]
combined_metrics["validation/accuracy"] /= combined_metrics["validation/epoch_size"]
combined_metrics["validation/loss"] /= combined_metrics["validation/epoch_size"]
if rank == 0:
for key, value in combined_metrics.items():
writer.add_scalar(key, value, global_step=epoch)
if combined_metrics["validation/accuracy"] > best_validation_accuracy:
best_validation_accuracy = combined_metrics["validation/accuracy"]
model_to_save = model.module if hasattr(model, 'module') else model
torch.save(dict(
epoch=epoch,
model_state_dict=model_to_save.state_dict(),
optimizer_state_dict=optimizer.state_dict(),
args=args
),
os.path.join(logdir, "best-model.pt")
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--max-epochs', type=int, default=None)
parser.add_argument('--device', type=str, default=None)
parser.add_argument('--batch-size', type=int, default=24)
parser.add_argument('--max-sequence-length', type=int, default=128)
parser.add_argument('--random-sequence-length', action='store_true')
parser.add_argument('--epoch-size', type=int, default=None)
parser.add_argument('--seed', type=int, default=None)
parser.add_argument('--data-dir', type=str, default='data')
parser.add_argument('--real-dataset', type=str, default='webtext')
parser.add_argument('--fake-dataset', type=str, default='xl-1542M-k40')
parser.add_argument('--token-dropout', type=float, default=None)
parser.add_argument('--large', action='store_true', help='use the roberta-large model instead of roberta-base')
parser.add_argument('--learning-rate', type=float, default=2e-5)
parser.add_argument('--weight-decay', type=float, default=0)
args = parser.parse_args()
nproc = int(subprocess.check_output([sys.executable, '-c', "import torch;"
"print(torch.cuda.device_count() if torch.cuda.is_available() else 1)"]))
if nproc > 1:
print(f'Launching {nproc} processes ...', file=sys.stderr)
os.environ["MASTER_ADDR"] = '127.0.0.1'
os.environ["MASTER_PORT"] = str(29500)
os.environ['WORLD_SIZE'] = str(nproc)
os.environ['OMP_NUM_THREAD'] = str(1)
subprocesses = []
for i in range(nproc):
os.environ['RANK'] = str(i)
os.environ['LOCAL_RANK'] = str(i)
process = Process(target=run, kwargs=vars(args))
process.start()
subprocesses.append(process)
for process in subprocesses:
process.join()
else:
run(**vars(args))