Maria Castellanos commited on
Commit
9638dbd
Β·
1 Parent(s): 0c194f3

Improve About

Browse files
Files changed (2) hide show
  1. _static/challenge_logo.png +0 -0
  2. app.py +38 -10
_static/challenge_logo.png ADDED
app.py CHANGED
@@ -48,21 +48,49 @@ def gradio_interface():
48
  timer.tick(fn=update_current_dataframe, inputs=[data_version], outputs=data_version)
49
 
50
  ### Header
51
- gr.Markdown("## Welcome to the OpenADMET + XXX Blind Challenge!")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  # --- Welcome markdown message ---
54
  welcome_md = """
55
  # πŸ’Š OpenADMET + XXX
56
  ## Computational Blind Challenge in ADMET
57
 
58
- Welcome to the **XXX**, hosted by **OpenADMET** in collaboration with **XXX**.
59
- This is a community-driven initiative to benchmark predictive models for ADMET properties in drug discovery.
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
- Your task is to develop and submit predictive models for key ADMET properties on a blinded test set of real world drug discovery data.
 
 
62
 
63
- ## ADMET Properties:
64
- *Absorption*, *Distribution*, *Metabolism*, *Excretion*, *Toxicology*--or **ADMET**--endpoints sit in the middle of the assay cascade and can make or break preclinical candidate molecules.
65
- For this blind challenge we selected several crucial endpoints for the community to predict:
66
  - LogD
67
  - Kinetic Solubility **KSOL**: uM
68
  - Mouse Liver Microsomal (**MLM**) *CLint*: mL/min/kg
@@ -126,10 +154,10 @@ def gradio_interface():
126
  with gr.Tabs(elem_classes="tab-buttons"):
127
  lboard_dict = {}
128
 
129
- with gr.TabItem("πŸ“About"):
130
  gr.Markdown(welcome_md)
131
 
132
- with gr.TabItem("πŸš€Leaderboard", elem_id="lb_subtabs"):
133
  gr.Markdown("View the leaderboard for each ADMET endpoint by selecting the appropiate tab.")
134
  # Make separate leaderboards in separate tabs
135
  #per_ep = build_leaderboard()
@@ -162,7 +190,7 @@ def gradio_interface():
162
 
163
  data_version.change(fn=refresh_if_changed, outputs=[lboard_dict[ep] for ep in ALL_EPS])
164
 
165
- with gr.TabItem("Submit Predictions"):
166
  gr.Markdown(
167
  """
168
  # ADMET Endpoints Submission
 
48
  timer.tick(fn=update_current_dataframe, inputs=[data_version], outputs=data_version)
49
 
50
  ### Header
51
+ with gr.Row():
52
+ with gr.Column(scale=8): # bigger text area
53
+ gr.Markdown("""
54
+ ## Welcome to the OpenADMET + XXX Blind Challenge!
55
+ Your task is to develop and submit predictive models for key ADMET properties on a blinded test set of real world drug discovery data πŸ§‘β€πŸ”¬
56
+
57
+ Go to the **Leaderboard** to check out how the challenge is going.
58
+ To participate, head out to the **Submit** tab and upload your results as a `CSV` file.
59
+ """
60
+ )
61
+ with gr.Column(scale=1): # smaller side column for logo
62
+ gr.Image(
63
+ value="./_static/challenge_logo.png",
64
+ show_label=False,
65
+ show_download_button=False,
66
+ width="10vw", # Take up the width of the column (2/8 = 1/4)
67
+ )
68
 
69
  # --- Welcome markdown message ---
70
  welcome_md = """
71
  # πŸ’Š OpenADMET + XXX
72
  ## Computational Blind Challenge in ADMET
73
 
74
+ This challenge is a community-driven initiative to benchmark predictive models for ADMET properties in drug discovery,
75
+ hosted by **OpenADMET** in collaboration with **XXX**.
76
+
77
+
78
+ ## Why are ADMET properties important in drug discovery?
79
+ Small molecules continue to be the bricks and mortar of drug discovery globally, accounting for ~75% of FDA approvals over the last decade.
80
+ Oral bioavailability, easily tunable properties, modulation of a wide range of mechanisms,
81
+ and ease of manufacturing make small molecules highly attractive as therapeutic agents, a trend that is not expected to drastically change,
82
+ despite increased interest in biologics. Indeed, newer small molecule modalities such as degraders, molecular glues, and antibody-drug conjugates
83
+ (to name a few) make understanding small molecule properties more important than ever.
84
+
85
+ It is fairly difficult to predict the lifetime and distribution of small molecules within the body. Additionally,
86
+ interaction with off-targets can cause safety issues and toxicity. Collectively these *Absorption*, *Distribution*, *Metabolism*, *Excretion*, *Toxicology*--or **ADMET**--properties
87
+ sit in the middle of the assay cascade and can make or break preclinical candidate molecules.
88
 
89
+ **OpenADMET** aims to address these challenges through an open science effort to build predictive models of ADMET properties by characterizing the proteins and mechanisms
90
+ that give rise to these properties through integrated structural biology, high throughput experimentation and integrative computational models.
91
+ Read more about our strategy to transform drug discovery on our [website](https://openadmet.org/community/blogs/whatisopenadmet/).
92
 
93
+ For this blind challenge we selected ten (10) crucial endpoints for the community to predict:
 
 
94
  - LogD
95
  - Kinetic Solubility **KSOL**: uM
96
  - Mouse Liver Microsomal (**MLM**) *CLint*: mL/min/kg
 
154
  with gr.Tabs(elem_classes="tab-buttons"):
155
  lboard_dict = {}
156
 
157
+ with gr.TabItem("πŸ“– About"):
158
  gr.Markdown(welcome_md)
159
 
160
+ with gr.TabItem("πŸš€ Leaderboard", elem_id="lb_subtabs"):
161
  gr.Markdown("View the leaderboard for each ADMET endpoint by selecting the appropiate tab.")
162
  # Make separate leaderboards in separate tabs
163
  #per_ep = build_leaderboard()
 
190
 
191
  data_version.change(fn=refresh_if_changed, outputs=[lboard_dict[ep] for ep in ALL_EPS])
192
 
193
+ with gr.TabItem("βœ‰οΈ Submit"):
194
  gr.Markdown(
195
  """
196
  # ADMET Endpoints Submission