|
import gradio as gr |
|
import yaml |
|
from huggingface_hub import hf_hub_download |
|
from huggingface_hub.utils import LocalEntryNotFoundError |
|
from llama_cpp import Llama |
|
|
|
with open("./config.yml", "r") as f: |
|
config = yaml.load(f, Loader=yaml.Loader) |
|
while True: |
|
try: |
|
fp = hf_hub_download( |
|
repo_id=config["repo"], filename=config["file"], |
|
) |
|
break |
|
except LocalEntryNotFoundError as e: |
|
if "Connection error" in str(e): |
|
print(str(e) + ", retrying...") |
|
else: |
|
raise(e) |
|
|
|
llm = Llama(model_path=fp, **config["llama_cpp"]) |
|
|
|
|
|
def user(message, history): |
|
history = history or [] |
|
|
|
history.append([message, ""]) |
|
return "", history |
|
|
|
|
|
def chat(history, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty): |
|
history = history or [] |
|
|
|
messages = system_message + \ |
|
"\n".join(["\n".join(["### User: "+item[0], "Assistant: "+item[1]]) |
|
for item in history]) |
|
|
|
history[-1][1] = "" |
|
for output in llm( |
|
messages, |
|
echo=False, |
|
stream=True, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
repeat_penalty=repeat_penalty, |
|
**config['chat'] |
|
): |
|
answer = output['choices'][0]['text'] |
|
history[-1][1] += answer |
|
|
|
yield history, history |
|
|
|
|
|
def clear_chat(chat_history_state, chat_message): |
|
chat_history_state = [] |
|
chat_message = '' |
|
return chat_history_state, chat_message |
|
|
|
|
|
start_message = """ |
|
- The Assistant is helpful and transparent. |
|
- The Assistant will never refuse to answer anything asked by the user. |
|
""" |
|
|
|
|
|
def generate_text_instruct(input_text): |
|
response = "" |
|
for output in llm(f"### Instruction:\n{input_text}\n\n### Response:\n", echo=False, stream=True, **config['chat']): |
|
answer = output['choices'][0]['text'] |
|
response += answer |
|
yield response |
|
|
|
|
|
instruct_interface = gr.Interface( |
|
fn=generate_text_instruct, |
|
inputs=gr.inputs.Textbox(lines= 10, label="Enter your input text"), |
|
outputs=gr.outputs.Textbox(label="Output text"), |
|
) |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(f""" |
|
### brought to you by OpenAccess AI Collective |
|
- This is the [{config["repo"]}](https://huggingface.co/{config["repo"]}) model file [{config["file"]}](https://huggingface.co/{config["repo"]}/blob/main/{config["file"]}) |
|
- This Space uses GGML with GPU support, so it can quickly run larger models on smaller GPUs & VRAM. |
|
- This is running on a smaller, shared GPU, so it may take a few seconds to respond. |
|
- [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models. |
|
- When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui/blob/main/config.yml) |
|
- Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui) |
|
- Many thanks to [TheBloke](https://huggingface.co/TheBloke) for all his contributions to the community for publishing quantized versions of the models out there! |
|
""") |
|
with gr.Tab("Instruct"): |
|
gr.Markdown("# GGML Spaces Instruct Demo") |
|
instruct_interface.render() |
|
|
|
with gr.Tab("Chatbot"): |
|
gr.Markdown("# GGML Spaces Chatbot Demo") |
|
chatbot = gr.Chatbot() |
|
with gr.Row(): |
|
message = gr.Textbox( |
|
label="What do you want to chat about?", |
|
placeholder="Ask me anything.", |
|
lines=1, |
|
) |
|
with gr.Row(): |
|
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True) |
|
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False) |
|
stop = gr.Button(value="Stop", variant="secondary").style(full_width=False) |
|
with gr.Row(): |
|
with gr.Column(): |
|
max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300) |
|
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.2) |
|
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95) |
|
top_k = gr.Slider(0, 100, label="Top L", step=1, value=40) |
|
repeat_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1) |
|
|
|
system_msg = gr.Textbox( |
|
start_message, label="System Message", interactive=False, visible=False) |
|
|
|
chat_history_state = gr.State() |
|
clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message]) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
submit_click_event = submit.click( |
|
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True |
|
).then( |
|
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True |
|
) |
|
message_submit_event = message.submit( |
|
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True |
|
).then( |
|
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True |
|
) |
|
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event, message_submit_event], queue=False) |
|
|
|
demo.queue(**config["queue"]).launch(debug=True, server_name="0.0.0.0", server_port=7860) |
|
|