|
import gradio as gr |
|
|
|
import core as core |
|
from style import CSS, LANG_SYMBOLS, T_SYMBOLS, TITLE |
|
|
|
demo = gr.Blocks(css=CSS) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown( |
|
"This is a collection of multilingual evaluation results obtained using our fork of the LM-evaluation-harness (https://github.com/OpenGPTX/lm-evaluation-harness), based on V1 of the https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.\ |
|
Note that currently, benchmarks are available in 21 European languages (Irish, Maltese, Croatian missing).", |
|
elem_classes="markdown-text", |
|
) |
|
|
|
selected_tab = gr.State(value=0) |
|
|
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
label="Search models", |
|
placeholder=" π Separate multiple queries with ';' and press ENTER...", |
|
show_label=True, |
|
elem_id="search-bar", |
|
) |
|
|
|
model_types = gr.CheckboxGroup( |
|
label="Select model type", |
|
choices=[ |
|
( |
|
f"Pretrained {T_SYMBOLS['pretrained']}", |
|
T_SYMBOLS["pretrained"], |
|
), |
|
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]), |
|
], |
|
value=list(T_SYMBOLS.values()), |
|
) |
|
with gr.Row(): |
|
langs_bar = gr.CheckboxGroup( |
|
choices=[(LANG_SYMBOLS.get(l, l), l) for l in core.languages_list], |
|
value=core.languages_list, |
|
label="Select languages to average over", |
|
elem_id="column-select", |
|
interactive=True, |
|
scale=6, |
|
) |
|
with gr.Column(scale=1): |
|
clear = gr.ClearButton( |
|
langs_bar, |
|
value="Deselect all languages", |
|
size="sm", |
|
scale=1, |
|
) |
|
select = gr.Button(value="Select all languages", size="sm", scale=1) |
|
|
|
def update_bar(selected_tab): |
|
if selected_tab in [0, 1]: |
|
choices = [(LANG_SYMBOLS.get(l, l), l) for l in core.languages_list] |
|
value = core.languages_list |
|
else: |
|
raise ValueError |
|
langs_bar = gr.CheckboxGroup( |
|
choices=choices, |
|
value=value, |
|
label="Select languages to average over", |
|
elem_id="column-select", |
|
interactive=True, |
|
) |
|
return langs_bar |
|
|
|
select.click(update_bar, inputs=[selected_tab], outputs=langs_bar) |
|
|
|
with gr.Row(): |
|
shown_tasks = gr.CheckboxGroup( |
|
choices=[], |
|
value=[], |
|
label="Select tasks to show", |
|
elem_id="column-select", |
|
interactive=True, |
|
scale=50, |
|
) |
|
fewshot = gr.Radio( |
|
choices=[("0-Shot", False), ("Few-shot", True)], |
|
value=True, |
|
label="Select evaluation type", |
|
scale=29, |
|
) |
|
clear = gr.ClearButton(shown_tasks, value="Deselect all tasks", size="sm", scale=21) |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
LLM accuracy benchmark", elem_id="llm-benchmark-tab-table-acc", id=0) as acc: |
|
leaderboard_table = gr.Dataframe() |
|
with gr.TabItem( |
|
"π LLM translation benchmark", |
|
elem_id="llm-benchmark-tab-table-misc", |
|
id=1, |
|
) as misc: |
|
leaderboard_table_misc = gr.Dataframe() |
|
|
|
demo.load( |
|
core.update_task_groups_and_fewshot, |
|
[gr.State(value=0), model_types, langs_bar, fewshot], |
|
[shown_tasks, fewshot, selected_tab, model_types, langs_bar], |
|
) |
|
fewshot.change( |
|
core.update_task_groups_and_fewshot, |
|
[selected_tab, model_types, langs_bar, fewshot], |
|
[shown_tasks, fewshot, selected_tab, model_types, langs_bar], |
|
) |
|
acc.select( |
|
core.update_task_groups_and_fewshot, |
|
inputs=[gr.State(value=0), model_types, langs_bar, fewshot], |
|
outputs=[shown_tasks, fewshot, selected_tab, model_types, langs_bar], |
|
) |
|
misc.select( |
|
core.update_task_groups_and_fewshot, |
|
inputs=[gr.State(value=1), model_types, langs_bar, fewshot], |
|
outputs=[shown_tasks, fewshot, selected_tab, model_types, langs_bar], |
|
) |
|
for comp, fn in [ |
|
(search_bar, "submit"), |
|
(langs_bar, "change"), |
|
(shown_tasks, "change"), |
|
(fewshot, "change"), |
|
(model_types, "change"), |
|
]: |
|
getattr(comp, fn)( |
|
core.update_df, |
|
[shown_tasks, search_bar, langs_bar, model_types, fewshot], |
|
leaderboard_table, |
|
) |
|
getattr(comp, fn)( |
|
core.update_df, |
|
[shown_tasks, search_bar, langs_bar, model_types, fewshot], |
|
leaderboard_table_misc, |
|
) |
|
|
|
gr.Blocks.load( |
|
block=demo, |
|
fn=core.update_df, |
|
inputs=[shown_tasks, search_bar, langs_bar, model_types, fewshot], |
|
outputs=leaderboard_table, |
|
) |
|
|
|
gr.Blocks.load( |
|
block=demo, |
|
fn=core.update_df, |
|
inputs=[shown_tasks, search_bar, langs_bar, model_types, fewshot], |
|
outputs=leaderboard_table_misc, |
|
) |
|
|
|
demo.launch() |
|
|