fsrs-optimizer / plot.py
derek-thomas's picture
derek-thomas HF staff
Comment out print statements
303cbb8
raw
history blame
4.44 kB
from tqdm.auto import trange
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
def make_plot(proj_dir, type_sequence, w, difficulty_distribution_padding, progress=gr.Progress(track_tqdm=True)):
base = 1.01
index_len = 800
index_offset = 150
d_range = 10
d_offset = 1
r_repetitions = 1
f_repetitions = 2.3
max_repetitions = 200000
type_block = dict()
type_count = dict()
last_t = type_sequence[0]
type_block[last_t] = 1
type_count[last_t] = 1
for t in type_sequence[1:]:
type_count[t] = type_count.setdefault(t, 0) + 1
if t != last_t:
type_block[t] = type_block.setdefault(t, 0) + 1
last_t = t
if 2 in type_count and 2 in type_block:
f_repetitions = round(type_count[2] / type_block[2] + 1, 1)
def stability2index(stability):
return int(round(np.log(stability) / np.log(base)) + index_offset)
def init_stability(d):
return max(((d - w[2]) / w[3] + 2) * w[1] + w[0], np.power(base, -index_offset))
def cal_next_recall_stability(s, r, d, response):
if response == 1:
return s * (1 + np.exp(w[6]) * (11 - d) * np.power(s, w[7]) * (np.exp((1 - r) * w[8]) - 1))
else:
return w[9] * np.power(d, w[10]) * np.power(s, w[11]) * np.exp((1 - r) * w[12])
stability_list = np.array([np.power(base, i - index_offset) for i in range(index_len)])
# print(f"terminal stability: {stability_list.max(): .2f}")
df = pd.DataFrame(columns=["retention", "difficulty", "repetitions"])
for percentage in trange(96, 70, -2, desc='Repetition vs Retention plot'):
recall = percentage / 100
repetitions_list = np.zeros((d_range, index_len))
repetitions_list[:, :-1] = max_repetitions
for d in range(d_range, 0, -1):
s0 = init_stability(d)
s0_index = stability2index(s0)
diff = max_repetitions
while diff > 0.1:
s0_repetitions = repetitions_list[d - 1][s0_index]
for s_index in range(index_len - 2, -1, -1):
stability = stability_list[s_index];
interval = max(1, round(stability * np.log(recall) / np.log(0.9)))
p_recall = np.power(0.9, interval / stability)
recall_s = cal_next_recall_stability(stability, p_recall, d, 1)
forget_d = min(d + d_offset, 10)
forget_s = cal_next_recall_stability(stability, p_recall, forget_d, 0)
recall_s_index = min(stability2index(recall_s), index_len - 1)
forget_s_index = min(max(stability2index(forget_s), 0), index_len - 1)
recall_repetitions = repetitions_list[d - 1][recall_s_index] + r_repetitions
forget_repetitions = repetitions_list[forget_d - 1][forget_s_index] + f_repetitions
exp_repetitions = p_recall * recall_repetitions + (1.0 - p_recall) * forget_repetitions
if exp_repetitions < repetitions_list[d - 1][s_index]:
repetitions_list[d - 1][s_index] = exp_repetitions
diff = s0_repetitions - repetitions_list[d - 1][s0_index]
df.loc[0 if pd.isnull(df.index.max()) else df.index.max() + 1] = [recall, d, s0_repetitions]
df.sort_values(by=["difficulty", "retention"], inplace=True)
df.to_csv(proj_dir/"expected_repetitions.csv", index=False)
# print("expected_repetitions.csv saved.")
optimal_retention_list = np.zeros(10)
df2 = pd.DataFrame()
for d in range(1, d_range + 1):
retention = df[df["difficulty"] == d]["retention"]
repetitions = df[df["difficulty"] == d]["repetitions"]
optimal_retention = retention.iat[repetitions.argmin()]
optimal_retention_list[d - 1] = optimal_retention
df2 = df2.append(
pd.DataFrame({'retention': retention, 'expected repetitions': repetitions, 'd': d, 'r': optimal_retention}))
fig = px.line(df2, x="retention", y="expected repetitions", color='d', log_y=True)
# print(f"\n-----suggested retention: {np.inner(difficulty_distribution_padding, optimal_retention_list):.2f}-----")
suggested_retention_markdown = f"""# Suggested Retention: `{np.inner(difficulty_distribution_padding, optimal_retention_list):.2f}`"""
return fig, suggested_retention_markdown