|
import streamlit as st |
|
import pandas as pd |
|
from ast import literal_eval |
|
import altair as alt |
|
import matplotlib.pyplot as plt |
|
|
|
from utils import process_dataset, eval_tags, change_and_delta |
|
from language import process_for_lang, filter_multilinguality |
|
from pipelines import filter_pipeline_data |
|
|
|
def main(): |
|
|
|
supported_revisions = ["05_12_22", "28_11_22", "22_11_22", "14_11_22", "07_11_22", "31_10_22", "24_10_22", "17_10_22", "10_10_22", "27_09_22"] |
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
new = st.selectbox( |
|
'Last revision', |
|
supported_revisions, |
|
index=0) |
|
with col2: |
|
base = st.selectbox( |
|
'Old revision', |
|
supported_revisions, |
|
index=1) |
|
with col3: |
|
base_old = st.selectbox( |
|
'Very old revision', |
|
supported_revisions, |
|
index=2) |
|
|
|
|
|
old_old_data = process_dataset(base_old) |
|
old_data = process_dataset(base) |
|
data = process_dataset(new) |
|
old_old_data["tags"] = old_old_data.apply(eval_tags, axis=1) |
|
old_data["tags"] = old_data.apply(eval_tags, axis=1) |
|
data["tags"] = data.apply(eval_tags, axis=1) |
|
|
|
|
|
total_samples_old_old = old_old_data.shape[0] |
|
total_samples_old = old_data.shape[0] |
|
total_samples = data.shape[0] |
|
|
|
curr_change, delta = change_and_delta(total_samples_old_old, total_samples_old, total_samples) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric(label="Total public models", value=total_samples, delta=total_samples-total_samples_old) |
|
|
|
with col2: |
|
st.metric(label="Rate of change", value=curr_change, delta=delta) |
|
|
|
|
|
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(["Language", "License", "Pipeline", "Social Features", "Libraries", "Model Cards", "Super users", "Raw Data"]) |
|
|
|
with tab1: |
|
st.header("Languages info") |
|
|
|
filtered_data = data.copy() |
|
old_filtered_data = old_data.copy() |
|
old_old_filtered_data = old_old_data.copy() |
|
|
|
modality = st.selectbox( |
|
'Modalities', |
|
["All", "NLP", "Audio", "Multimodal"]) |
|
|
|
filtered_data, no_lang_count, total_langs, langs = process_for_lang(filtered_data, modality) |
|
old_filtered_data, no_lang_count_old, total_langs_old, langs_old = process_for_lang(old_filtered_data, modality) |
|
old_old_filtered_data, no_lang_count_old_old, total_langs_old_old, _ = process_for_lang(old_old_filtered_data, modality) |
|
|
|
v = filtered_data.shape[0]-no_lang_count |
|
v_old = old_filtered_data.shape[0]-no_lang_count_old |
|
v_old_old = old_old_filtered_data.shape[0]-no_lang_count_old_old |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric(label="Language Specified", value=v, delta=int(v-v_old)) |
|
with col2: |
|
curr_change, delta = change_and_delta(v_old_old, v_old, v) |
|
st.metric(label="Language Specified Rate of Change", value=curr_change, delta=delta) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric(label="No Language Specified", value=no_lang_count, delta=int(no_lang_count-no_lang_count_old)) |
|
with col2: |
|
curr_change, delta = change_and_delta(no_lang_count_old_old, no_lang_count_old, no_lang_count) |
|
st.metric(label="No Language Specified Rate of Change", value=curr_change, delta=delta) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric(label="Total Unique Languages", value=total_langs, delta=int(total_langs-total_langs_old)) |
|
with col2: |
|
curr_change, delta = change_and_delta(total_langs_old_old, total_langs_old, total_langs) |
|
st.metric(label="Total Unique Languages Rate of Change", value=curr_change, delta=delta) |
|
st.text(f"New languages {set(langs)-set(langs_old)}") |
|
st.text(f"Lost languages {set(langs_old)-set(langs)}") |
|
|
|
st.subheader("Count of languages per model repo") |
|
st.text("Some repos are for multiple languages, so the count is greater than 1") |
|
linguality = st.selectbox( |
|
'All or just Multilingual', |
|
["All", "Just Multilingual", "Three or more languages"]) |
|
|
|
models_with_langs = filter_multilinguality(filtered_data, linguality) |
|
models_with_langs_old = filter_multilinguality(old_filtered_data, linguality) |
|
|
|
df1 = models_with_langs['language_count'].value_counts() |
|
df1_old = models_with_langs_old['language_count'].value_counts() |
|
st.bar_chart(df1) |
|
|
|
st.subheader("Most frequent languages") |
|
linguality_2 = st.selectbox( |
|
'All or filtered', |
|
["All", "No English", "Remove top 10"]) |
|
|
|
models_with_langs = filtered_data[filtered_data["language_count"] > 0] |
|
langs = models_with_langs["languages"].explode() |
|
langs = langs[langs != {}] |
|
orig_d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index() |
|
d = orig_d |
|
|
|
models_with_langs_old = old_filtered_data[old_filtered_data["language_count"] > 0] |
|
langs = models_with_langs_old["languages"].explode() |
|
langs = langs[langs != {}] |
|
orig_d_old = langs.value_counts().rename_axis("language").to_frame('counts').reset_index() |
|
|
|
if linguality_2 == "No English": |
|
d = orig_d.iloc[1:] |
|
elif linguality_2 == "Remove top 10": |
|
d = orig_d.iloc[10:] |
|
|
|
|
|
d = d.iloc[:25] |
|
|
|
st.write(alt.Chart(d).mark_bar().encode( |
|
x='counts', |
|
y=alt.X('language', sort=None) |
|
)) |
|
|
|
st.subheader("Raw Data") |
|
l = df1.rename_axis("lang_count").reset_index().rename(columns={"language_count": "r_c"}) |
|
l_old = df1_old.rename_axis("lang_count").reset_index().rename(columns={"language_count": "old_r_c"}) |
|
final_data = pd.merge( |
|
l, l_old, how="outer", on="lang_count" |
|
) |
|
final_data["diff"] = final_data["r_c"] - final_data["old_r_c"] |
|
st.dataframe(final_data) |
|
|
|
d = orig_d.astype(str) |
|
orig_d_old = orig_d_old.astype(str).rename(columns={"counts": "old_c"}) |
|
final_data = pd.merge( |
|
d, orig_d_old, how="outer", on="language" |
|
) |
|
final_data['counts'] = final_data['counts'].fillna(0).astype(int) |
|
final_data['old_c'] = final_data['old_c'].fillna(0).astype(int) |
|
final_data["diff"] = final_data["counts"] - final_data["old_c"] |
|
final_data['language'] = final_data['language'].astype(str) |
|
st.dataframe(final_data) |
|
|
|
with tab2: |
|
st.header("License info") |
|
|
|
no_license_count = data["license"].isna().sum() |
|
no_license_count_old = old_data["license"].isna().sum() |
|
no_license_count_old_old = old_old_data["license"].isna().sum() |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
v = total_samples-no_license_count |
|
v_old = total_samples_old-no_license_count_old |
|
st.metric(label="License Specified", value=v, delta=int(v-v_old)) |
|
with col2: |
|
v = total_samples-no_license_count |
|
v_old = total_samples_old-no_license_count_old |
|
v_old_old = total_samples_old-no_license_count_old_old |
|
curr_change, delta = change_and_delta(v_old_old, v_old, v) |
|
st.metric(label="License Specified Rate of Change", value=curr_change, delta=delta) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric(label="No License Specified", value=no_license_count, delta=int(no_license_count-no_license_count_old)) |
|
with col2: |
|
curr_change, delta = change_and_delta(no_license_count_old_old, no_license_count_old, no_license_count) |
|
st.metric(label="No License Specified Rate of Change", value=curr_change, delta=delta) |
|
|
|
col1, col2 = st.columns(2) |
|
unique_licenses = len(data["license"].unique()) |
|
unique_licenses_old = len(old_data["license"].unique()) |
|
unique_licenses_old_old = len(old_old_data["license"].unique()) |
|
with col1: |
|
st.metric(label="Total Unique Licenses", value=unique_licenses, delta=int(unique_licenses-unique_licenses_old)) |
|
with col2: |
|
curr_change, delta = change_and_delta(unique_licenses_old_old, unique_licenses_old, unique_licenses) |
|
st.metric(label="Total Unique Licenses Rate of Change", value=curr_change, delta=delta) |
|
st.text(f"New licenses {set(data['license'].unique())-set(old_data['license'].unique())}") |
|
st.text(f"Old licenses {set(old_data['license'].unique())-set(data['license'].unique())}") |
|
|
|
st.subheader("Distribution of licenses per model repo") |
|
license_filter = st.selectbox( |
|
'All or filtered', |
|
["All", "No Apache 2.0", "Remove top 10"]) |
|
|
|
filter = 0 |
|
if license_filter == "All": |
|
filter = 0 |
|
elif license_filter == "No Apache 2.0": |
|
filter = 1 |
|
else: |
|
filter = 2 |
|
|
|
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index() |
|
if filter == 1: |
|
d = d.iloc[1:] |
|
elif filter == 2: |
|
d = d.iloc[10:] |
|
|
|
|
|
d = d.iloc[:25] |
|
|
|
st.write(alt.Chart(d).mark_bar().encode( |
|
x='counts', |
|
y=alt.X('license', sort=None) |
|
)) |
|
st.text("There are some edge cases, as old repos using lists of licenses.") |
|
|
|
st.subheader("Raw Data") |
|
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index() |
|
d_old = old_data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index().rename(columns={"counts": "old_c"}) |
|
final_data = pd.merge( |
|
d, d_old, how="outer", on="license" |
|
) |
|
final_data["diff"] = final_data["counts"] - final_data["old_c"] |
|
st.dataframe(final_data) |
|
|
|
with tab3: |
|
st.header("Pipeline info") |
|
|
|
tags = data["tags"].explode() |
|
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() |
|
s = tags["tag"] |
|
s = s[s.apply(type) == str] |
|
unique_tags = len(s.unique()) |
|
|
|
tags_old = old_data["tags"].explode() |
|
tags_old = tags_old[tags_old.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() |
|
s_o = tags_old["tag"] |
|
s_o = s_o[s_o.apply(type) == str] |
|
unique_tags_old = len(s_o.unique()) |
|
|
|
tags_old_old = old_old_data["tags"].explode() |
|
tags_old_old = tags_old_old[tags_old_old.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() |
|
s_old_old = tags_old_old["tag"] |
|
s_old_old = s_old_old[s_old_old.apply(type) == str] |
|
unique_tags_old_old = len(s_old_old.unique()) |
|
|
|
no_pipeline_count = data["pipeline"].isna().sum() |
|
no_pipeline_count_old = old_data["pipeline"].isna().sum() |
|
no_pipeline_count_old_old = old_old_data["pipeline"].isna().sum() |
|
|
|
col1, col2 = st.columns(2) |
|
v = total_samples-no_pipeline_count |
|
v_old = total_samples_old-no_pipeline_count_old |
|
v_old_old = total_samples_old_old-no_pipeline_count_old_old |
|
with col1: |
|
st.metric(label="# models that have any pipeline", value=v, delta=int(v-v_old)) |
|
with col2: |
|
curr_change, delta = change_and_delta(v_old_old, v_old, v) |
|
st.metric(label="# models rate of change", value=curr_change, delta=delta) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric(label="No pipeline Specified", value=no_pipeline_count, delta=int(no_pipeline_count-no_pipeline_count_old)) |
|
with col2: |
|
curr_change, delta = change_and_delta(no_pipeline_count_old_old, no_pipeline_count_old, no_pipeline_count) |
|
st.metric(label="No pipeline Specified rate of change", value=curr_change, delta=delta) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric(label="Total Unique Tags", value=unique_tags, delta=int(unique_tags-unique_tags_old)) |
|
with col2: |
|
curr_change, delta = change_and_delta(unique_tags_old_old, unique_tags_old, unique_tags) |
|
st.metric(label="Total Unique Tags", value=curr_change, delta=delta) |
|
|
|
modality_filter = st.selectbox( |
|
'Modalities', |
|
["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"]) |
|
|
|
st.subheader("High-level metrics") |
|
|
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
p = st.selectbox( |
|
'What pipeline do you want to see?', |
|
["all", *data["pipeline"].unique()] |
|
) |
|
with col2: |
|
l = st.selectbox( |
|
'What library do you want to see?', |
|
["all", "not transformers", *data["library"].unique()] |
|
) |
|
with col3: |
|
f = st.selectbox( |
|
'What trf framework support?', |
|
["all", "pytorch", "tensorflow", "jax"] |
|
) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
filt = st.multiselect( |
|
label="Tags (All by default)", |
|
options=s.unique(), |
|
default=None) |
|
with col2: |
|
o = st.selectbox( |
|
label="Operation (for tags)", |
|
options=["Any", "All", "None"] |
|
) |
|
|
|
filtered_data, tags = filter_pipeline_data(data, modality_filter, p, l, f, filt, o) |
|
filtered_data_old, old_tags = filter_pipeline_data(old_data, modality_filter, p, l, f, filt, o) |
|
filtered_data_old_old, old_old_tags = filter_pipeline_data(old_old_data, modality_filter, p, l, f, filt, o) |
|
st.subheader("Pipeline breakdown") |
|
|
|
|
|
d = filtered_data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index() |
|
columns_of_interest = ["downloads_30d", "likes", "pytorch", "tensorflow", "jax"] |
|
grouped_data = filtered_data.groupby("pipeline").sum()[columns_of_interest] |
|
final_data = pd.merge( |
|
d, grouped_data, how="outer", on="pipeline" |
|
) |
|
|
|
d_old = filtered_data_old["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index() |
|
grouped_data_old = filtered_data_old.groupby("pipeline").sum()[columns_of_interest] |
|
final_data_old = pd.merge( |
|
d_old, grouped_data_old, how="outer", on="pipeline" |
|
) |
|
|
|
d_old = filtered_data_old_old["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index() |
|
grouped_data_old_old = filtered_data_old_old.groupby("pipeline").sum()[columns_of_interest] |
|
|
|
sums = grouped_data.sum() |
|
sums_old = grouped_data_old.sum() |
|
sums_old_old = grouped_data_old_old.sum() |
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
v = filtered_data.shape[0] |
|
v_old = filtered_data_old.shape[0] |
|
v_old_old = filtered_data_old_old.shape[0] |
|
with col1: |
|
st.metric(label="Total models", value=v, delta=int(v - v_old)) |
|
with col2: |
|
curr_change, delta = change_and_delta(v_old_old, v_old, v) |
|
st.metric(label="Total models rate of change", value=curr_change, delta=delta) |
|
with col3: |
|
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"], delta=int(sums["downloads_30d"] - sums_old["downloads_30d"])) |
|
with col4: |
|
print(sums_old_old["downloads_30d"], sums_old["downloads_30d"], sums["downloads_30d"]) |
|
curr_change, delta = change_and_delta(sums_old_old["downloads_30d"], sums_old["downloads_30d"], sums["downloads_30d"]) |
|
st.metric(label="Cumulative Downloads (30d) rate of change", value=curr_change, delta=delta) |
|
|
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
st.metric(label="Total unique pipelines", value=len(filtered_data["pipeline"].unique())) |
|
with col2: |
|
st.metric(label="Cumulative likes", value=sums["likes"], delta=int(sums["likes"] - sums_old["likes"])) |
|
with col3: |
|
curr_change, delta = change_and_delta(sums_old_old["likes"], sums_old["likes"], sums["likes"]) |
|
st.metric(label="Cumulative Likes rate of change", value=curr_change, delta=delta) |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
st.metric(label="Total in PT", value=sums["pytorch"], delta=int(sums["pytorch"] - sums_old["pytorch"])) |
|
with col2: |
|
st.metric(label="Total in TF", value=sums["tensorflow"], delta=int(sums["tensorflow"] - sums_old["tensorflow"])) |
|
with col3: |
|
st.metric(label="Total in JAX", value=sums["jax"], delta=int(sums["jax"] - sums_old["jax"])) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric(label="Total unique libraries", value=len(filtered_data["library"].unique())) |
|
with col2: |
|
st.metric(label="Total unique modality", value=len(filtered_data["modality"].unique())) |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric(label="Total transformers models", value=len(filtered_data[filtered_data["library"] == "transformers"])) |
|
with col2: |
|
st.metric(label="Total non transformers models", value=len(filtered_data[filtered_data["library"] != "transformers"])) |
|
|
|
st.metric(label="Unique Tags", value=len(tags), delta=int(len(tags) - len(old_tags))) |
|
st.text(f"New tags {set(tags)-set(old_tags)}") |
|
st.text(f"Lost tags {set(old_tags)-set(tags)}") |
|
|
|
st.subheader("Pipeline breakdown by modality") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric(label="Total CV models", value=len(filtered_data[filtered_data["modality"] == "cv"])) |
|
with col2: |
|
st.metric(label="Total NLP models", value=len(filtered_data[filtered_data["modality"] == "nlp"])) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric(label="Total Audio models", value=len(filtered_data[filtered_data["modality"] == "audio"])) |
|
with col2: |
|
st.metric(label="Total RL models", value=len(filtered_data[filtered_data["modality"] == "rl"])) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric(label="Total Tabular models", value=len(filtered_data[filtered_data["modality"] == "tabular"])) |
|
with col2: |
|
st.metric(label="Total Multimodal models", value=len(filtered_data[filtered_data["modality"] == "multimodal"])) |
|
|
|
st.subheader("Count of models per pipeline") |
|
st.write(alt.Chart(d).mark_bar().encode( |
|
x='counts', |
|
y=alt.X('pipeline', sort=None) |
|
)) |
|
|
|
st.subheader("Aggregated data") |
|
st.dataframe(final_data) |
|
|
|
st.subheader("Most common model types (specific to transformers)") |
|
d = filtered_data["model_type"].value_counts().rename_axis("model_type").to_frame('counts').reset_index() |
|
d = d.iloc[:15] |
|
st.write(alt.Chart(d).mark_bar().encode( |
|
x='counts', |
|
y=alt.X('model_type', sort=None) |
|
)) |
|
|
|
st.subheader("Most common library types (Learn more in library tab)") |
|
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15) |
|
st.write(alt.Chart(d).mark_bar().encode( |
|
x='counts', |
|
y=alt.X('library', sort=None) |
|
)) |
|
|
|
st.subheader("Tags by count") |
|
tags = filtered_data["tags"].explode() |
|
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() |
|
st.write(alt.Chart(tags.head(30)).mark_bar().encode( |
|
x='counts', |
|
y=alt.X('tag', sort=None) |
|
)) |
|
|
|
st.subheader("Raw Data") |
|
columns_of_interest = [ |
|
"repo_id", "author", "model_type", "files_per_repo", "library", |
|
"downloads_30d", "likes", "pytorch", "tensorflow", "jax"] |
|
raw_data = filtered_data[columns_of_interest] |
|
st.dataframe(raw_data) |
|
|
|
|
|
|
|
|
|
with tab4: |
|
st.header("Social Features") |
|
|
|
columns_of_interest = ["prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"] |
|
sums = data[columns_of_interest].sum() |
|
sums_old = old_data[columns_of_interest].sum() |
|
sums_old_old = old_old_data[columns_of_interest].sum() |
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
with col1: |
|
st.metric(label="Total PRs", value=sums["prs_count"],delta=int(sums["prs_count"] - sums_old["prs_count"])) |
|
with col2: |
|
st.metric(label="PRs opened", value=sums["prs_open"], delta=int(sums["prs_open"] - sums_old["prs_open"])) |
|
with col3: |
|
st.metric(label="PRs merged", value=sums["prs_merged"], delta=int(sums["prs_merged"] - sums_old["prs_merged"])) |
|
with col4: |
|
st.metric(label="PRs closed", value=sums["prs_closed"], delta=int(sums["prs_closed"] - sums_old["prs_closed"])) |
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
with col1: |
|
curr_change, delta = change_and_delta(sums_old_old["prs_count"], sums_old["prs_count"], sums["prs_count"]) |
|
st.metric(label="Total PRs change", value=curr_change,delta=delta) |
|
with col2: |
|
curr_change, delta = change_and_delta(sums_old_old["prs_open"], sums_old["prs_open"], sums["prs_open"]) |
|
st.metric(label="PRs opened change", value=curr_change,delta=delta) |
|
with col3: |
|
curr_change, delta = change_and_delta(sums_old_old["prs_merged"], sums_old["prs_merged"], sums["prs_merged"]) |
|
st.metric(label="PRs merged change", value=curr_change,delta=delta) |
|
with col4: |
|
curr_change, delta = change_and_delta(sums_old_old["prs_closed"], sums_old["prs_closed"], sums["prs_closed"]) |
|
st.metric(label="PRs closed change", value=curr_change,delta=delta) |
|
|
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
st.metric(label="Total discussions", value=sums["discussions_count"], delta=int(sums["discussions_count"] - sums_old["discussions_count"])) |
|
with col2: |
|
st.metric(label="Discussions open", value=sums["discussions_open"], delta=int(sums["discussions_open"] - sums_old["discussions_open"])) |
|
with col3: |
|
st.metric(label="Discussions closed", value=sums["discussions_closed"], delta=int(sums["discussions_closed"] - sums_old["discussions_closed"])) |
|
|
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
curr_change, delta = change_and_delta(sums_old_old["discussions_count"], sums_old["discussions_count"], sums["discussions_count"]) |
|
st.metric(label="Total discussions change", value=curr_change,delta=delta) |
|
with col2: |
|
curr_change, delta = change_and_delta(sums_old_old["discussions_open"], sums_old["discussions_open"], sums["discussions_open"]) |
|
st.metric(label="Discussions open change", value=curr_change,delta=delta) |
|
with col3: |
|
curr_change, delta = change_and_delta(sums_old_old["discussions_closed"], sums_old["discussions_closed"], sums["discussions_closed"]) |
|
st.metric(label="Discussions closed change", value=curr_change,delta=delta) |
|
|
|
likes = [] |
|
for r in supported_revisions: |
|
likes.append(process_dataset(r)["likes"].sum()) |
|
|
|
source = pd.DataFrame({ |
|
'revision': supported_revisions[::-1], |
|
'likes': likes[::-1], |
|
}) |
|
|
|
st.subheader("Total likes") |
|
st.write(alt.Chart(source).mark_bar().encode( |
|
x=alt.X('revision', sort=alt.EncodingSortField(field="revision", op="count", order='ascending')), |
|
y='likes' |
|
)) |
|
|
|
st.subheader("Likes Rate of Change") |
|
diffs = source["likes"].pct_change() |
|
source = pd.DataFrame({ |
|
'revision': supported_revisions[::-1][1:], |
|
'likes_change': diffs[1:], |
|
}) |
|
|
|
print(source[["revision", "likes_change"]]) |
|
st.write(alt.Chart(source).mark_bar().encode( |
|
x=alt.X('revision', sort=alt.EncodingSortField(field="revision", op="count", order='ascending')), |
|
y='likes_change' |
|
)) |
|
|
|
|
|
|
|
st.subheader("Raw Data") |
|
filtered_data = data[["repo_id", "prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]].sort_values("prs_count", ascending=False).reset_index(drop=True) |
|
st.dataframe(filtered_data) |
|
|
|
|
|
with tab5: |
|
st.header("Library info") |
|
|
|
no_library_count = data["library"].isna().sum() |
|
no_library_count_old = old_data["library"].isna().sum() |
|
no_library_count_old_old = old_old_data["library"].isna().sum() |
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
v = total_samples-no_library_count |
|
v_old = total_samples_old-no_library_count_old |
|
st.metric(label="# models that have any library", value=v, delta=int(v-v_old)) |
|
with col2: |
|
st.metric(label="No library Specified", value=no_library_count, delta=int(no_library_count-no_library_count_old)) |
|
with col3: |
|
v = len(data["library"].unique()) |
|
v_old = len(old_data["library"].unique()) |
|
st.metric(label="Total Unique library", value=v, delta=int(v-v_old)) |
|
|
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
v = total_samples-no_library_count |
|
v_old = total_samples_old-no_library_count_old |
|
v_old_old = total_samples_old_old-no_library_count_old_old |
|
curr_change, delta = change_and_delta(v_old_old, v_old, v) |
|
st.metric(label="# models that have any library change", value=curr_change, delta=delta) |
|
with col2: |
|
curr_change, delta = change_and_delta(no_library_count_old_old, no_library_count_old, no_library_count) |
|
st.metric(label="No library Specified Change", value=curr_change, delta=delta) |
|
with col3: |
|
v = len(data["library"].unique()) |
|
v_old = len(old_data["library"].unique()) |
|
v_old_old = len(old_old_data["library"].unique()) |
|
curr_change, delta = change_and_delta(v_old_old, v_old, v) |
|
st.metric(label="Total Unique library", value=curr_change, delta=delta) |
|
|
|
st.subheader("High-level metrics") |
|
filtered_data = data[data['library'].notna()] |
|
filtered_data_old = old_data[old_data['library'].notna()] |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
lib = st.selectbox( |
|
'What library do you want to see? ', |
|
["all", "not transformers", *filtered_data["library"].unique()] |
|
) |
|
with col2: |
|
pip = st.selectbox( |
|
'What pipeline do you want to see? ', |
|
["all", *filtered_data["pipeline"].unique()] |
|
) |
|
|
|
if pip != "all" : |
|
filtered_data = filtered_data[filtered_data["pipeline"] == pip] |
|
filtered_data_old = filtered_data_old[filtered_data_old["pipeline"] == pip] |
|
if lib != "all" and lib != "not transformers": |
|
filtered_data = filtered_data[filtered_data["library"] == lib] |
|
filtered_data_old = filtered_data_old[filtered_data_old["library"] == lib] |
|
if lib == "not transformers": |
|
filtered_data = filtered_data[filtered_data["library"] != "transformers"] |
|
filtered_data_old = filtered_data_old[filtered_data_old["library"] != "transformers"] |
|
|
|
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index() |
|
grouped_data = filtered_data.groupby("library").sum()[["downloads_30d", "likes"]] |
|
final_data = pd.merge( |
|
d, grouped_data, how="outer", on="library" |
|
) |
|
sums = grouped_data.sum() |
|
|
|
d_old = filtered_data_old["library"].value_counts().rename_axis("library").to_frame('counts').reset_index() |
|
grouped_data_old = filtered_data_old.groupby("library").sum()[["downloads_30d", "likes"]] |
|
final_data_old = pd.merge( |
|
d_old, grouped_data_old, how="outer", on="library" |
|
).add_suffix('_old') |
|
final_data_old = final_data_old.rename(index=str, columns={"library_old": "library"}) |
|
sums_old = grouped_data_old.sum() |
|
|
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
v = filtered_data.shape[0] |
|
v_old = filtered_data_old.shape[0] |
|
st.metric(label="Total models", value=v, delta=int(v-v_old)) |
|
with col2: |
|
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"], delta=int(sums["downloads_30d"]-sums_old["downloads_30d"])) |
|
with col3: |
|
st.metric(label="Cumulative likes", value=sums["likes"], delta=int(sums["likes"]-sums_old["likes"])) |
|
|
|
st.subheader("Most common library types (Learn more in library tab)") |
|
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15) |
|
st.write(alt.Chart(d).mark_bar().encode( |
|
x='counts', |
|
y=alt.X('library', sort=None) |
|
)) |
|
|
|
st.subheader("Aggregated Data") |
|
final_data = pd.merge( |
|
final_data, final_data_old, how="outer", on="library" |
|
) |
|
final_data["counts_diff"] = final_data["counts"] - final_data["counts_old"] |
|
final_data["downloads_diff"] = final_data["downloads_30d"] - final_data["downloads_30d_old"] |
|
final_data["likes_diff"] = final_data["likes"] - final_data["likes_old"] |
|
|
|
st.dataframe(final_data) |
|
|
|
st.subheader("Raw Data") |
|
columns_of_interest = ["repo_id", "author", "files_per_repo", "library", "downloads_30d", "likes"] |
|
filtered_data = filtered_data[columns_of_interest] |
|
st.dataframe(filtered_data) |
|
|
|
with tab6: |
|
st.header("Model cards") |
|
|
|
columns_of_interest = ["has_model_index", "has_metadata", "has_text", "text_length"] |
|
rows = data.shape[0] |
|
rows_old = old_data.shape[0] |
|
rows_old_old = old_old_data.shape[0] |
|
|
|
cond = data["has_model_index"] | data["has_text"] |
|
with_model_card = data[cond] |
|
c_model_card = with_model_card.shape[0] |
|
|
|
cond = old_data["has_model_index"] | old_data["has_text"] |
|
with_model_card_old = old_data[cond] |
|
c_model_card_old = with_model_card_old.shape[0] |
|
|
|
cond = old_old_data["has_model_index"] | old_old_data["has_text"] |
|
with_model_card_old_old = old_old_data[cond] |
|
c_model_card_old_old = with_model_card_old_old.shape[0] |
|
|
|
st.subheader("High-level metrics") |
|
col1, col2, col3, col4 = st.columns(4) |
|
with col1: |
|
st.metric(label="# with model card file", value=c_model_card, delta=int(c_model_card-c_model_card_old)) |
|
with col2: |
|
curr_change, delta = change_and_delta(c_model_card_old_old, c_model_card_old, c_model_card) |
|
st.metric(label="# with model card file change", value=curr_change, delta=delta) |
|
with col3: |
|
st.metric(label="# without model card file", value=rows-c_model_card, delta=int((rows-c_model_card)-(rows_old-c_model_card_old))) |
|
with col4: |
|
curr_change, delta = change_and_delta(rows_old_old-c_model_card_old_old, rows_old-c_model_card_old, rows-c_model_card) |
|
st.metric(label="# without model card file change", value=curr_change, delta=delta) |
|
|
|
with_index = data["has_model_index"].sum() |
|
with_index_old = old_data["has_model_index"].sum() |
|
with_index_old_old = old_old_data["has_model_index"].sum() |
|
with col1: |
|
st.metric(label="# with model index", value=with_index, delta=int(with_index-with_index_old)) |
|
with col2: |
|
curr_change, delta = change_and_delta(with_index_old_old, with_index_old, with_index) |
|
st.metric(label="# with model index change", value=curr_change, delta=delta) |
|
with col3: |
|
st.metric(label="# without model index", value=rows-with_index, delta=int((rows-with_index)-(rows_old-with_index_old))) |
|
with col4: |
|
curr_change, delta = change_and_delta(rows_old_old-with_index_old_old, rows_old-with_index_old, rows-with_index) |
|
st.metric(label="# without model index change", value=curr_change, delta=delta) |
|
|
|
with_text = data["has_text"] |
|
with_text_old = old_data["has_text"] |
|
with_text_old_old = old_old_data["has_text"] |
|
|
|
with_text_sum = with_text.sum() |
|
with_text_old_sum = with_text_old.sum() |
|
with_text_old_old_sum = with_text_old_old.sum() |
|
with col1: |
|
st.metric(label="# with model card text", value=with_text_sum, delta=int(with_text_sum-with_text_old_sum)) |
|
with col2: |
|
curr_change, delta = change_and_delta(with_text_old_old_sum, with_text_old_sum, with_text_sum) |
|
st.metric(label="# with model card text change", value=curr_change, delta=delta) |
|
with col3: |
|
st.metric(label="# without card text", value=rows-with_text_sum, delta=int((rows-with_text_sum)-(with_text_old_sum))) |
|
with col4: |
|
curr_change, delta = change_and_delta(rows_old_old-with_text_old_old_sum, rows_old-with_text_old_sum, rows-with_text_sum) |
|
st.metric(label="# without card text change", value=curr_change, delta=delta) |
|
|
|
st.subheader("Length (chars) of model card content") |
|
fig, _ = plt.subplots() |
|
_ = data["length_bins"].value_counts().plot.bar() |
|
st.metric(label="# average length of model card (chars)", value=data[with_text]["text_length"].mean()) |
|
st.pyplot(fig) |
|
|
|
st.subheader("Tags (Read more in Pipeline tab)") |
|
tags = data["tags"].explode() |
|
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() |
|
st.write(alt.Chart(tags.head(30)).mark_bar().encode( |
|
x='counts', |
|
y=alt.X('tag', sort=None) |
|
)) |
|
|
|
with tab7: |
|
st.header("Authors") |
|
st.text("This info corresponds to the repos owned by the authors") |
|
authors = data.groupby("author").sum().drop(["text_length", "Unnamed: 0"], axis=1).sort_values("downloads_30d", ascending=False) |
|
d = data["author"].value_counts().rename_axis("author").to_frame('counts').reset_index() |
|
final_data = pd.merge( |
|
d, authors, how="outer", on="author" |
|
) |
|
st.dataframe(final_data) |
|
|
|
with tab8: |
|
st.header("Raw Data") |
|
d = data.astype(str) |
|
st.dataframe(d) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|
|
|
|
|
|
|