Spaces:
Runtime error
Runtime error
import os | |
from datetime import datetime | |
import json | |
from huggingface_hub import snapshot_download | |
from collections import defaultdict | |
import pandas as pd | |
import streamlit as st | |
from datetime import datetime, timedelta | |
import matplotlib.pyplot as plt | |
user_input = st.text_input("Enter your text here:") | |
libraries = [ | |
"open-source-metrics/accelerate-dependents", | |
"open-source-metrics/hub-docs-dependents", | |
"open-source-metrics/huggingface_hub-dependents", | |
"open-source-metrics/evaluate-dependents", | |
"open-source-metrics/datasets-dependents", | |
"open-source-metrics/pytorch-image-models-dependents", | |
"open-source-metrics/tokenizers-dependents", | |
"open-source-metrics/transformers-dependents", | |
"open-source-metrics/diffusers-dependents", | |
"open-source-metrics/gradio-dependents", | |
"open-source-metrics/optimum-dependents", | |
"open-source-metrics/accelerate-dependents", | |
] | |
option = st.selectbox( | |
'Choose library', | |
libraries | |
) | |
cached_folder = snapshot_download("open-source-metrics/transformers-dependents", repo_type="dataset") | |
num_dependents = defaultdict(int) | |
num_stars_all_dependents = defaultdict(int) | |
def load_json_files(directory): | |
for subdir, dirs, files in os.walk(directory): | |
for file in files: | |
if file.endswith('.json'): | |
file_path = os.path.join(subdir, file) | |
date = "_".join(file_path.split(".")[-2].split("/")[-3:]) | |
with open(file_path, 'r') as f: | |
data = json.load(f) | |
# Process the JSON data as needed | |
if "name" in data and "stars" in data: | |
num_dependents[date] = len(data["name"]) | |
num_stars_all_dependents[date] = sum(data["stars"]) | |
# Replace 'your_directory_path' with the path to the directory containing your '11' and '12' folders | |
load_json_files(cached_folder) | |
def sort_dict_by_date(d): | |
# Convert date strings to datetime objects and sort | |
sorted_tuples = sorted(d.items(), key=lambda x: datetime.strptime(x[0], '%Y_%m_%d')) | |
# Convert back to dictionary if needed | |
return defaultdict(int, sorted_tuples) | |
def remove_incorrect_entries(data): | |
# Convert string dates to datetime objects for easier comparison | |
sorted_data = sorted(data.items(), key=lambda x: datetime.strptime(x[0], '%Y_%m_%d')) | |
# Initialize a new dictionary to store the corrected data | |
corrected_data = defaultdict(int) | |
# Variable to keep track of the number of dependents on the previous date | |
previous_dependents = None | |
for date, dependents in sorted_data: | |
# If the current number of dependents is not less than the previous, add it to the corrected data | |
if previous_dependents is None or dependents >= previous_dependents: | |
corrected_data[date] = dependents | |
previous_dependents = dependents | |
return corrected_data | |
def interpolate_missing_dates(data): | |
# Convert string dates to datetime objects | |
temp_data = {datetime.strptime(date, '%Y_%m_%d'): value for date, value in data.items()} | |
# Find the min and max dates to establish the range | |
min_date, max_date = min(temp_data.keys()), max(temp_data.keys()) | |
# Generate a date range | |
current_date = min_date | |
while current_date <= max_date: | |
# If the current date is missing | |
if current_date not in temp_data: | |
# Find previous and next dates that are present | |
prev_date = current_date - timedelta(days=1) | |
next_date = current_date + timedelta(days=1) | |
while prev_date not in temp_data: | |
prev_date -= timedelta(days=1) | |
while next_date not in temp_data: | |
next_date += timedelta(days=1) | |
# Linear interpolation | |
prev_value = temp_data[prev_date] | |
next_value = temp_data[next_date] | |
interpolated_value = prev_value + ((next_value - prev_value) * ((current_date - prev_date) / (next_date - prev_date))) | |
temp_data[current_date] = interpolated_value | |
current_date += timedelta(days=1) | |
# Convert datetime objects back to string format | |
interpolated_data = defaultdict(int, {date.strftime('%Y_%m_%d'): int(value) for date, value in temp_data.items()}) | |
return interpolated_data | |
num_dependents = remove_incorrect_entries(num_dependents) | |
num_stars_all_dependents = remove_incorrect_entries(num_stars_all_dependents) | |
num_dependents = interpolate_missing_dates(num_dependents) | |
num_stars_all_dependents = interpolate_missing_dates(num_stars_all_dependents) | |
num_dependents = sort_dict_by_date(num_dependents) | |
num_stars_all_dependents = sort_dict_by_date(num_stars_all_dependents) | |
num_dependents_df = pd.DataFrame(list(num_dependents.items()), columns=['Date', 'Value']) | |
num_cum_stars_df = pd.DataFrame(list(num_stars_all_dependents.items()), columns=['Date', 'Value']) | |
num_dependents_df['Date'] = pd.to_datetime(num_dependents_df['Date'], format='%Y_%m_%d') | |
num_cum_stars_df['Date'] = pd.to_datetime(num_cum_stars_df['Date'], format='%Y_%m_%d') | |
num_dependents_df.set_index('Date', inplace=True) | |
num_dependents_df = num_dependents_df.resample('D').asfreq() | |
num_dependents_df['Value'] = num_dependents_df['Value'].interpolate() | |
num_cum_stars_df.set_index('Date', inplace=True) | |
num_cum_stars_df = num_cum_stars_df.resample('D').asfreq() | |
num_cum_stars_df['Value'] = num_cum_stars_df['Value'].interpolate() | |
# Plotting | |
plt.figure(figsize=(10, 6)) | |
plt.plot(num_dependents_df.index, num_dependents_df['Value'], marker='o') | |
plt.xlabel('Date') | |
plt.ylabel('Number of Dependents') | |
plt.title('Dependencies History') | |
# Display in Streamlit | |
st.pyplot(plt) | |