Spaces:
Sleeping
Sleeping
kz209
commited on
Commit
·
f276c92
1
Parent(s):
9dfac6e
update
Browse files- utils/model.py +32 -17
- utils/multiple_stream.py +7 -7
utils/model.py
CHANGED
@@ -60,27 +60,42 @@ class Model(torch.nn.Module):
|
|
60 |
input_ids = self.tokenizer(content_list, return_tensors="pt", padding=True, truncation=True).input_ids.to(self.model.device)
|
61 |
|
62 |
if streaming:
|
63 |
-
#
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
else:
|
|
|
79 |
outputs = self.model.generate(
|
80 |
input_ids,
|
81 |
max_new_tokens=max_length,
|
82 |
do_sample=True,
|
83 |
temperature=temp,
|
84 |
-
eos_token_id=self.tokenizer.eos_token_id
|
85 |
)
|
86 |
-
return
|
|
|
60 |
input_ids = self.tokenizer(content_list, return_tensors="pt", padding=True, truncation=True).input_ids.to(self.model.device)
|
61 |
|
62 |
if streaming:
|
63 |
+
# Process each input separately
|
64 |
+
for single_input_ids in input_ids:
|
65 |
+
# Set up the initial generation parameters
|
66 |
+
gen_kwargs = {
|
67 |
+
"input_ids": single_input_ids.unsqueeze(0),
|
68 |
+
"max_new_tokens": max_length,
|
69 |
+
"do_sample": True,
|
70 |
+
"temperature": temp,
|
71 |
+
"eos_token_id": self.tokenizer.eos_token_id,
|
72 |
+
}
|
73 |
+
|
74 |
+
# Generate and yield tokens one by one
|
75 |
+
unfinished_sequences = single_input_ids.unsqueeze(0)
|
76 |
+
while unfinished_sequences.shape[1] < gen_kwargs["max_new_tokens"]:
|
77 |
+
with torch.no_grad():
|
78 |
+
output = self.model.generate(**gen_kwargs, max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
|
79 |
+
|
80 |
+
next_token_logits = output.scores[0][0]
|
81 |
+
next_token = torch.argmax(next_token_logits, dim=-1).unsqueeze(0)
|
82 |
+
unfinished_sequences = torch.cat([unfinished_sequences, next_token], dim=-1)
|
83 |
+
|
84 |
+
# Yield the newly generated token
|
85 |
+
yield self.tokenizer.decode(next_token[0], skip_special_tokens=True)
|
86 |
+
|
87 |
+
if next_token.item() == self.tokenizer.eos_token_id:
|
88 |
+
break
|
89 |
+
|
90 |
+
# Update input_ids for the next iteration
|
91 |
+
gen_kwargs["input_ids"] = unfinished_sequences
|
92 |
else:
|
93 |
+
# Non-streaming generation (unchanged)
|
94 |
outputs = self.model.generate(
|
95 |
input_ids,
|
96 |
max_new_tokens=max_length,
|
97 |
do_sample=True,
|
98 |
temperature=temp,
|
99 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
100 |
)
|
101 |
+
return self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
utils/multiple_stream.py
CHANGED
@@ -26,13 +26,13 @@ def stream_data(content_list, model):
|
|
26 |
# Use the gen method to handle batch generation
|
27 |
while True:
|
28 |
updated = False
|
29 |
-
for i, content in enumerate(content_list):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
if not updated:
|
38 |
break
|
|
|
26 |
# Use the gen method to handle batch generation
|
27 |
while True:
|
28 |
updated = False
|
29 |
+
#for i, content in enumerate(content_list):
|
30 |
+
try:
|
31 |
+
words = next(model.gen(content_list, streaming=True)) # Wrap content in a list to match expected input type
|
32 |
+
outputs = [outputs[i].append(f" {words[i]}") for i in range(len(content_list))]
|
33 |
+
updated = True
|
34 |
+
except StopIteration:
|
35 |
+
pass
|
36 |
|
37 |
if not updated:
|
38 |
break
|