Spaces:
Sleeping
Sleeping
kz209
commited on
Commit
Β·
6f65006
1
Parent(s):
60d569f
update
Browse files- pages/leaderboard.py +10 -10
pages/leaderboard.py
CHANGED
@@ -16,35 +16,35 @@ df = pd.DataFrame(data)
|
|
16 |
def update_leaderboard(sort_by):
|
17 |
# In a real implementation, this would filter the data based on the category
|
18 |
sorted_df = df.sort_values(by=sort_by, ascending=False)
|
19 |
-
|
20 |
# Update ranks based on new sorting
|
21 |
sorted_df['Rank'] = range(1, len(sorted_df) + 1)
|
22 |
-
|
23 |
# Convert DataFrame to HTML with clickable headers for sorting
|
24 |
html = sorted_df.to_html(index=False, escape=False)
|
25 |
-
|
26 |
# Add sorting links to column headers
|
27 |
for column in sorted_df.columns:
|
28 |
html = html.replace(f'<th>{column}</th>',
|
29 |
f'<th><a href="#" onclick="sortBy(\'{column}\'); return false;">{column}</a></th>')
|
30 |
-
|
31 |
return html
|
32 |
|
33 |
def create_leaderboard():
|
34 |
with gr.Blocks(css="#leaderboard table { width: 100%; } #leaderboard th, #leaderboard td { padding: 8px; text-align: left; }") as demo:
|
35 |
gr.Markdown("# π Chris-Project Summarization Arena Leaderboard")
|
36 |
-
|
37 |
with gr.Row():
|
38 |
gr.Markdown("[Blog](placeholder) | [GitHub](placeholder) | [Paper](placeholder) | [Dataset](placeholder) | [Twitter](placeholder) | [Discord](placeholder)")
|
39 |
-
|
40 |
gr.Markdown("Welcome to our open platform for evaluating LLM summarization capabilities. We use the DATASET_NAME_PLACEHOLDER dataset to generate summaries with MODEL_NAME_PLACEHOLDER. These summaries are then evaluated by STRONGER_MODEL_NAME_PLACEHOLDER using the METRIC1_PLACEHOLDER and METRIC2_PLACEHOLDER metrics")
|
41 |
-
|
42 |
sort_by = gr.Dropdown(list(df.columns), label="Sort by", value="Rank")
|
43 |
-
|
44 |
gr.Markdown("**Performance**\n\n**methods**: 4, **questions**: 150")
|
45 |
-
|
46 |
leaderboard = gr.HTML(update_leaderboard("Rank"), elem_id="leaderboard")
|
47 |
-
|
48 |
sort_by.change(update_leaderboard, inputs=[sort_by], outputs=[leaderboard])
|
49 |
|
50 |
return demo
|
|
|
16 |
def update_leaderboard(sort_by):
|
17 |
# In a real implementation, this would filter the data based on the category
|
18 |
sorted_df = df.sort_values(by=sort_by, ascending=False)
|
19 |
+
|
20 |
# Update ranks based on new sorting
|
21 |
sorted_df['Rank'] = range(1, len(sorted_df) + 1)
|
22 |
+
|
23 |
# Convert DataFrame to HTML with clickable headers for sorting
|
24 |
html = sorted_df.to_html(index=False, escape=False)
|
25 |
+
|
26 |
# Add sorting links to column headers
|
27 |
for column in sorted_df.columns:
|
28 |
html = html.replace(f'<th>{column}</th>',
|
29 |
f'<th><a href="#" onclick="sortBy(\'{column}\'); return false;">{column}</a></th>')
|
30 |
+
|
31 |
return html
|
32 |
|
33 |
def create_leaderboard():
|
34 |
with gr.Blocks(css="#leaderboard table { width: 100%; } #leaderboard th, #leaderboard td { padding: 8px; text-align: left; }") as demo:
|
35 |
gr.Markdown("# π Chris-Project Summarization Arena Leaderboard")
|
36 |
+
|
37 |
with gr.Row():
|
38 |
gr.Markdown("[Blog](placeholder) | [GitHub](placeholder) | [Paper](placeholder) | [Dataset](placeholder) | [Twitter](placeholder) | [Discord](placeholder)")
|
39 |
+
|
40 |
gr.Markdown("Welcome to our open platform for evaluating LLM summarization capabilities. We use the DATASET_NAME_PLACEHOLDER dataset to generate summaries with MODEL_NAME_PLACEHOLDER. These summaries are then evaluated by STRONGER_MODEL_NAME_PLACEHOLDER using the METRIC1_PLACEHOLDER and METRIC2_PLACEHOLDER metrics")
|
41 |
+
|
42 |
sort_by = gr.Dropdown(list(df.columns), label="Sort by", value="Rank")
|
43 |
+
|
44 |
gr.Markdown("**Performance**\n\n**methods**: 4, **questions**: 150")
|
45 |
+
|
46 |
leaderboard = gr.HTML(update_leaderboard("Rank"), elem_id="leaderboard")
|
47 |
+
|
48 |
sort_by.change(update_leaderboard, inputs=[sort_by], outputs=[leaderboard])
|
49 |
|
50 |
return demo
|