Spaces:
Sleeping
Sleeping
kz209
commited on
Commit
·
66846f0
1
Parent(s):
185c1c6
change from openai to phi
Browse files- pages/summarization_example.py +21 -13
- utils/multiple_stream.py +2 -2
pages/summarization_example.py
CHANGED
@@ -30,17 +30,25 @@ summarization: """ # noqa: E501
|
|
30 |
sources=sources,
|
31 |
)
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
return answer
|
46 |
|
@@ -58,11 +66,11 @@ input_text1 = st.text_area("question", height=None, \
|
|
58 |
|
59 |
|
60 |
# Button to trigger processing
|
61 |
-
lm = OpenAI()
|
62 |
|
63 |
if st.button('Submit'):
|
64 |
if input_text1:
|
65 |
-
response = generate_answer(
|
66 |
st.write('## Orginal Article:')
|
67 |
st.markdown(examples[example_selection])
|
68 |
|
|
|
30 |
sources=sources,
|
31 |
)
|
32 |
|
33 |
+
from transformers import pipeline
|
34 |
+
|
35 |
+
messages = [
|
36 |
+
{"role": "user", "content": content},
|
37 |
+
]
|
38 |
+
pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
|
39 |
+
answer = pipe(messages)
|
40 |
+
|
41 |
+
# answer = lm.chat.completions.create(
|
42 |
+
# temperature=0.8,
|
43 |
+
# max_tokens=800,
|
44 |
+
# messages=[
|
45 |
+
# {
|
46 |
+
# "role": "user",
|
47 |
+
# "content": content,
|
48 |
+
# },
|
49 |
+
# ],
|
50 |
+
# model=model_name,
|
51 |
+
# )
|
52 |
|
53 |
return answer
|
54 |
|
|
|
66 |
|
67 |
|
68 |
# Button to trigger processing
|
69 |
+
#lm = OpenAI()
|
70 |
|
71 |
if st.button('Submit'):
|
72 |
if input_text1:
|
73 |
+
response = generate_answer('', input_text1, model_selection)
|
74 |
st.write('## Orginal Article:')
|
75 |
st.markdown(examples[example_selection])
|
76 |
|
utils/multiple_stream.py
CHANGED
@@ -7,7 +7,7 @@ import streamlit as st
|
|
7 |
from streamlit.runtime.scriptrunner.script_run_context import \
|
8 |
add_script_run_ctx
|
9 |
|
10 |
-
|
11 |
Test of Time. A Benchmark for Evaluating LLMs on Temporal Reasoning. Large language models (LLMs) have \
|
12 |
showcased remarkable reasoning capabilities, yet they remain susceptible to errors, particularly in temporal \
|
13 |
reasoning tasks involving complex temporal logic.
|
@@ -15,7 +15,7 @@ reasoning tasks involving complex temporal logic.
|
|
15 |
|
16 |
def generate_data_test():
|
17 |
"""A generator to pass to st.write_stream"""
|
18 |
-
temp = copy.deepcopy(
|
19 |
l1 = temp.split()
|
20 |
random.shuffle(l1)
|
21 |
temp = ' '.join(l1)
|
|
|
7 |
from streamlit.runtime.scriptrunner.script_run_context import \
|
8 |
add_script_run_ctx
|
9 |
|
10 |
+
_TEST_ = """
|
11 |
Test of Time. A Benchmark for Evaluating LLMs on Temporal Reasoning. Large language models (LLMs) have \
|
12 |
showcased remarkable reasoning capabilities, yet they remain susceptible to errors, particularly in temporal \
|
13 |
reasoning tasks involving complex temporal logic.
|
|
|
15 |
|
16 |
def generate_data_test():
|
17 |
"""A generator to pass to st.write_stream"""
|
18 |
+
temp = copy.deepcopy(_TEST_)
|
19 |
l1 = temp.split()
|
20 |
random.shuffle(l1)
|
21 |
temp = ' '.join(l1)
|