|
import asyncio |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
from huggingface_hub import HfFileSystem |
|
|
|
import src.constants as constants |
|
from src.hub import load_file |
|
|
|
|
|
def fetch_result_paths(): |
|
fs = HfFileSystem() |
|
paths = fs.glob(f"{constants.RESULTS_DATASET_ID}/**/**/*.json") |
|
return paths |
|
|
|
|
|
def sort_result_paths_per_model(paths): |
|
from collections import defaultdict |
|
|
|
d = defaultdict(list) |
|
for path in paths: |
|
model_id, _ = path[len(constants.RESULTS_DATASET_ID) + 1:].rsplit("/", 1) |
|
d[model_id].append(path) |
|
return {model_id: sorted(paths) for model_id, paths in d.items()} |
|
|
|
|
|
def update_load_results_component(): |
|
return (gr.Button("Load", interactive=True), ) * 2 |
|
|
|
|
|
async def load_results_dataframe(model_id, result_paths_per_model=None): |
|
if not model_id or not result_paths_per_model: |
|
return |
|
result_paths = result_paths_per_model[model_id] |
|
results = await asyncio.gather(*[load_file(path) for path in result_paths]) |
|
data = {"results": {}, "configs": {}} |
|
for result in results: |
|
data["results"].update(result["results"]) |
|
data["configs"].update(result["configs"]) |
|
model_name = result.get("model_name", "Model") |
|
df = pd.json_normalize([data]) |
|
|
|
return df.set_index(pd.Index([model_name])).reset_index() |
|
|
|
|
|
async def load_results_dataframes(*model_ids, result_paths_per_model=None): |
|
result = await asyncio.gather(*[load_results_dataframe(model_id, result_paths_per_model) for model_id in model_ids]) |
|
return result |
|
|
|
|
|
def display_results(task, *dfs): |
|
dfs = [df.set_index("index") for df in dfs if "index" in df.columns] |
|
if not dfs: |
|
return None, None |
|
df = pd.concat(dfs) |
|
df = df.T.rename_axis(columns=None) |
|
return display_tab("results", df, task), display_tab("configs", df, task) |
|
|
|
|
|
def display_tab(tab, df, task): |
|
df = df.style.format(escape="html", na_rep="") |
|
df.hide( |
|
[ |
|
row |
|
for row in df.index |
|
if ( |
|
not row.startswith(f"{tab}.") |
|
or row.startswith(f"{tab}.leaderboard.") |
|
or row.endswith(".alias") |
|
or (not row.startswith(f"{tab}.{task}") if task != "All" else row.startswith(f"{tab}.leaderboard_arc_challenge")) |
|
) |
|
], |
|
axis="index", |
|
) |
|
df.apply(highlight_min_max, axis=1) |
|
start = len(f"{tab}.leaderboard_") if task == "All" else len(f"{tab}.{task} ") |
|
df.format_index(lambda idx: idx[start:].removesuffix(",none"), axis="index") |
|
return df.to_html() |
|
|
|
|
|
def update_tasks_component(): |
|
return ( |
|
gr.Radio( |
|
["All"] + list(constants.TASKS.values()), |
|
label="Tasks", |
|
info="Evaluation tasks to be displayed", |
|
value="All", |
|
visible=True, |
|
), |
|
) * 2 |
|
|
|
|
|
def clear_results(): |
|
|
|
return ( |
|
None, None, None, None, |
|
*(gr.Button("Load", interactive=False), ) * 2, |
|
*( |
|
gr.Radio( |
|
["All"] + list(constants.TASKS.values()), |
|
label="Tasks", |
|
info="Evaluation tasks to be displayed", |
|
value="All", |
|
visible=False, |
|
), |
|
) * 2, |
|
) |
|
|
|
|
|
def highlight_min_max(s): |
|
if s.name.endswith("acc,none") or s.name.endswith("acc_norm,none") or s.name.endswith("exact_match,none"): |
|
return np.where(s == np.nanmax(s.values), "background-color:green", "background-color:#D81B60") |
|
else: |
|
return [""] * len(s) |
|
|
|
|
|
def display_loading_message_for_results(): |
|
return ("<h3 style='text-align: center;'>Loading...</h3>", ) * 2 |
|
|