Spaces:
Runtime error
Runtime error
Add application file
Browse files- README.md +6 -7
- app.py +216 -0
- blau.png +0 -0
- demo_data.pkl +3 -0
- mundus.png +0 -0
- requirements.txt +9 -0
README.md
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.10.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces
|
|
|
1 |
---
|
2 |
+
title: Cc_clusters
|
3 |
+
emoji: 💩
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: green
|
6 |
sdk: streamlit
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
+
license: unlicense
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# File: app.py
|
3 |
+
# Project: 'Homework #3 OTUS.ML.Advanced'
|
4 |
+
# Created by Gennady Matveev (gm@og.ly) on 02-01-2022.
|
5 |
+
# %%
|
6 |
+
# Import libraries
|
7 |
+
import re
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
import streamlit as st
|
11 |
+
import requests
|
12 |
+
import pickle
|
13 |
+
from sklearn.preprocessing import StandardScaler
|
14 |
+
from sklearn.cluster import KMeans
|
15 |
+
import tsfel
|
16 |
+
from kneed import KneeLocator
|
17 |
+
import cryptocompare as cc
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
+
import plotly.express as px
|
20 |
+
from umap import UMAP
|
21 |
+
import warnings
|
22 |
+
|
23 |
+
plt.style.use("ggplot")
|
24 |
+
plt.rcParams["figure.figsize"] = (10, 5)
|
25 |
+
warnings.filterwarnings("ignore")
|
26 |
+
# pd.options.display.precision = 4
|
27 |
+
|
28 |
+
random_state = 17
|
29 |
+
scaler = StandardScaler()
|
30 |
+
n_jobs = -1
|
31 |
+
|
32 |
+
|
33 |
+
# %%
|
34 |
+
st.set_page_config(page_title="Cryptocurrencies clustering",
|
35 |
+
page_icon='./head.ico', layout='centered', initial_sidebar_state='expanded') # wide
|
36 |
+
|
37 |
+
padding = 0
|
38 |
+
st.markdown(f""" <style>
|
39 |
+
.reportview-container .main .block-container{{
|
40 |
+
padding-top: {padding}rem;
|
41 |
+
padding-right: {padding}rem;
|
42 |
+
padding-left: {padding}rem;
|
43 |
+
padding-bottom: {padding}rem;
|
44 |
+
}} </style> """, unsafe_allow_html=True)
|
45 |
+
|
46 |
+
st.image('./mundus.png')
|
47 |
+
st.subheader('Clustering analysis of cryptocurrencies')
|
48 |
+
st.markdown(
|
49 |
+
'*Explore similarities in statisticial, temporal and spectral domains*')
|
50 |
+
st.markdown('''Top 100 cryptocurrencies' daily closing prices are downloaded.
|
51 |
+
Their dynamics can be analized in search of similarities between coins.
|
52 |
+
Up to 8 currencies from each cluster are shown below.''')
|
53 |
+
st.markdown("""---""")
|
54 |
+
|
55 |
+
# %%
|
56 |
+
# Set cryptocompare API key:
|
57 |
+
api_key = st.secrets["api_key"]
|
58 |
+
# %%
|
59 |
+
headers = {
|
60 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.107 Safari/537.36"
|
61 |
+
}
|
62 |
+
req = f"https://min-api.cryptocompare.com/data/top/mktcapfull?limit=100&tsym=USD&api_key={api_key}"
|
63 |
+
|
64 |
+
# Utility functions for data download
|
65 |
+
|
66 |
+
|
67 |
+
@st.cache(ttl=600)
|
68 |
+
def get_price(ticker: str, limit: int):
|
69 |
+
|
70 |
+
return cc.get_historical_price_day(ticker, currency="USD",
|
71 |
+
limit=limit)
|
72 |
+
|
73 |
+
|
74 |
+
@st.cache(ttl=600)
|
75 |
+
def get_all_cc(limit: int):
|
76 |
+
df = pd.DataFrame(index=range(limit))
|
77 |
+
for tick in tickers:
|
78 |
+
# print(tick, end="\t")
|
79 |
+
try:
|
80 |
+
d = get_price(tick, limit)
|
81 |
+
one_cc = pd.DataFrame.from_dict(d)["close"]
|
82 |
+
one_cc.rename(index=tick, inplace=True)
|
83 |
+
df = pd.concat([df, one_cc], axis=1)
|
84 |
+
except:
|
85 |
+
pass
|
86 |
+
|
87 |
+
return df
|
88 |
+
|
89 |
+
# Utility functions for clustering analysis
|
90 |
+
|
91 |
+
|
92 |
+
def elbow_study(data, k_max: int = 10, model=KMeans):
|
93 |
+
X = scaler.fit_transform(data)
|
94 |
+
inertia = []
|
95 |
+
for k in range(2, k_max):
|
96 |
+
clusterer = model(n_clusters=k, random_state=random_state)
|
97 |
+
X_km = clusterer.fit(X)
|
98 |
+
inertia.append(np.sqrt(X_km.inertia_))
|
99 |
+
|
100 |
+
# Find a knee
|
101 |
+
kneedle = KneeLocator(range(2, k_max), inertia, S=2,
|
102 |
+
curve="convex", direction="decreasing")
|
103 |
+
# Use 3 clusters in case kneed doesn't find a knee
|
104 |
+
n_clusters = kneedle.knee or 3
|
105 |
+
|
106 |
+
return n_clusters
|
107 |
+
|
108 |
+
|
109 |
+
def plot_clusters_2(data, Xt, n_clusters, random_state):
|
110 |
+
clusterer = KMeans(n_clusters=n_clusters, max_iter=100,
|
111 |
+
random_state=random_state)
|
112 |
+
X = scaler.fit_transform(Xt)
|
113 |
+
dd = data.copy()
|
114 |
+
dd.loc["cluster"] = clusterer.fit_predict(X.T)
|
115 |
+
color = ["red", "green", "blue", "purple",
|
116 |
+
"orange", "magenta", "goldenrod"]
|
117 |
+
clusters_no = dd.loc["cluster"].value_counts(sort=False)
|
118 |
+
|
119 |
+
for c in range(n_clusters):
|
120 |
+
cc = color[c]
|
121 |
+
fig, ax = plt.subplots(2, 4, sharex='col', figsize=(15, 5))
|
122 |
+
cluster_ticks = dd.T[dd.T.loc[:, "cluster"] == c].index
|
123 |
+
for i, tick in enumerate(cluster_ticks[:8]):
|
124 |
+
ax[i % 2, i//2].plot(dd.iloc[:-1][tick],
|
125 |
+
color=cc) # , label=tick)
|
126 |
+
ax[i % 2, i//2].set_title(tick)
|
127 |
+
fig.suptitle(f"Cluster {c}, {clusters_no[c]} items\n", y=1.02)
|
128 |
+
st.pyplot(fig)
|
129 |
+
return dd
|
130 |
+
|
131 |
+
def visualize(Xt, n_clusters):
|
132 |
+
clusterer = KMeans(n_clusters=n_clusters, max_iter=100,
|
133 |
+
random_state=random_state)
|
134 |
+
|
135 |
+
X = scaler.fit_transform(Xt.T)
|
136 |
+
X_clust = clusterer.fit_predict(X)
|
137 |
+
X_color = X_clust.astype(str)
|
138 |
+
|
139 |
+
features = Xt.values
|
140 |
+
|
141 |
+
# UMAP
|
142 |
+
umap_3d = UMAP(n_components=3, init='random',
|
143 |
+
random_state=random_state)
|
144 |
+
|
145 |
+
proj_3d = umap_3d.fit_transform(features)
|
146 |
+
|
147 |
+
fig_3d = px.scatter_3d(
|
148 |
+
proj_3d, x=0, y=1, z=2,
|
149 |
+
color=X_color, labels={'color': 'clusters'},
|
150 |
+
color_discrete_sequence=["red", "green", "blue",
|
151 |
+
"purple", "orange", "magenta", "goldenrod"],
|
152 |
+
title=f"UMAP projection from feature space",
|
153 |
+
width=800, height=600,
|
154 |
+
)
|
155 |
+
fig_3d.update_traces(marker_size=5)
|
156 |
+
# fig_3d.show()
|
157 |
+
st.write(fig_3d)
|
158 |
+
# %%
|
159 |
+
# START Sidebar ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
160 |
+
|
161 |
+
|
162 |
+
st.sidebar.image('./blau.png')
|
163 |
+
demo = st.sidebar.checkbox(label="Use demo data?", value=True, help="Use demo data or fetch actual?")
|
164 |
+
days=st.sidebar.number_input('Number of days for analysis',
|
165 |
+
min_value=30, max_value=100, value=60)
|
166 |
+
domain=st.sidebar.selectbox('Domain', ('statistical', 'temporal', 'spectral', 'all'),
|
167 |
+
index=1, help='Domain to use feature extraction')
|
168 |
+
st.sidebar.markdown("""---""")
|
169 |
+
analyze=st.sidebar.button('Start analysis')
|
170 |
+
|
171 |
+
# END Sidebar ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
172 |
+
|
173 |
+
# Analysis
|
174 |
+
if analyze:
|
175 |
+
with st.spinner('Downloading data...'):
|
176 |
+
if demo==True:
|
177 |
+
with open("./demo_data.pkl", "rb") as f:
|
178 |
+
demo_data = pickle.load(f)
|
179 |
+
dl = demo_data.shape[0]
|
180 |
+
data_day = demo_data.iloc[dl-days:]
|
181 |
+
tickers = demo_data.columns
|
182 |
+
else:
|
183 |
+
top100=requests.get(req, headers=headers)
|
184 |
+
rs=re.compile(r"\"Name\":\"(?P<ticker>[A-Z0-9]+)\"")
|
185 |
+
tickers=rs.findall(top100.text)
|
186 |
+
data_day=get_all_cc(limit=days).copy()
|
187 |
+
|
188 |
+
with st.spinner(f'Extracting {domain} features...'):
|
189 |
+
dom=domain if domain != 'all' else None
|
190 |
+
cfg_file=tsfel.get_features_by_domain(dom)
|
191 |
+
# tsfel analysis
|
192 |
+
x_temp=tsfel.time_series_features_extractor(
|
193 |
+
cfg_file, data_day["BTC"], window_size=days)
|
194 |
+
tf_columns=x_temp.columns
|
195 |
+
xtf=pd.DataFrame(columns=data_day.columns, index=tf_columns)
|
196 |
+
# Fill df with features
|
197 |
+
for col in xtf.columns:
|
198 |
+
xtf[col]=tsfel.time_series_features_extractor(
|
199 |
+
cfg_file, data_day[col], window_size=days
|
200 |
+
).T
|
201 |
+
xtf.dropna(inplace=True)
|
202 |
+
|
203 |
+
# Features dataframe
|
204 |
+
Xt=pd.DataFrame(scaler.fit_transform(
|
205 |
+
xtf), columns=data_day.columns, index=xtf.index)
|
206 |
+
with st.spinner('Calculating optimal number of clusters...'):
|
207 |
+
# Get optimal no of clusters
|
208 |
+
n_clusters=elbow_study(Xt.T, model=KMeans) # metric="euclidean",
|
209 |
+
|
210 |
+
# Plot clusters
|
211 |
+
plot_clusters_2(data_day, Xt=Xt, n_clusters=n_clusters,
|
212 |
+
random_state=random_state
|
213 |
+
)
|
214 |
+
|
215 |
+
# Plot umap
|
216 |
+
# visualize(Xt, n_clusters)
|
blau.png
ADDED
demo_data.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9909080bb27a99e54587dd6007450e7b9430a2a63a549d988bbeb26792d12e6d
|
3 |
+
size 80516
|
mundus.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==1.4.0
|
2 |
+
numpy==1.22.0
|
3 |
+
scikit-learn==1.0.2
|
4 |
+
tsfel==0.1.4
|
5 |
+
kneed==0.7.0
|
6 |
+
cryptocompare==0.7.5
|
7 |
+
plotly==5.5.0
|
8 |
+
umap-learn==0.5.2
|
9 |
+
streamlit==1.12.2
|