Spaces:
Running
Running
| from __future__ import annotations | |
| import numpy as np | |
| import torch | |
| from contextlib import nullcontext | |
| from transformers import AutoProcessor, SiglipModel | |
| from src.models.utils import l2norm_rows | |
| class SigLIPLinearProbe: | |
| def __init__(self, head_path): | |
| self.model_id = "google/siglip-so400m-patch14-384" | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| self.torch_dtype = torch.float16 if self.device == "cuda" else torch.float32 | |
| self.model = SiglipModel.from_pretrained(self.model_id, dtype=self.torch_dtype).to(self.device) | |
| self.model.eval().requires_grad_(False) | |
| self.processor = AutoProcessor.from_pretrained(self.model_id) | |
| npz = np.load(head_path) | |
| self.w = torch.from_numpy(npz["w"]).to(self.device).float() | |
| self.b = torch.from_numpy(npz["b"]).to(self.device).float() | |
| self.use_amp = False | |
| if self.device == "cuda": | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.benchmark = True | |
| self.use_amp = True | |
| def encode(self, pil_list) -> torch.Tensor: | |
| imgs = [im.convert("RGB") for im in pil_list] | |
| enc = self.processor(images=imgs, return_tensors="pt") | |
| x = enc["pixel_values"].to(self.device, non_blocking=True, memory_format=torch.channels_last) | |
| ctx = torch.amp.autocast("cuda", dtype=self.torch_dtype) if self.use_amp else nullcontext() | |
| with ctx: | |
| f = self.model.get_image_features(pixel_values=x) | |
| f = f.float() | |
| return l2norm_rows(f) | |
| def logits(self, pil_list) -> torch.Tensor: | |
| f = self.encode(pil_list) | |
| return (f @ self.w + self.b).squeeze(1) | |
| def prob(self, pil_list ) -> torch.Tensor: | |
| z = torch.clamp(self.logits(pil_list), -50, 50) | |
| return torch.sigmoid(z) | |