Spaces:
onrdmr
/
Running on Zero

IDM-VTON
update IDM-VTON Demo
938e515
import torch
import torch.nn as nn
import torch.nn.functional as functional
try:
from queue import Queue
except ImportError:
from Queue import Queue
from .functions import *
class ABN(nn.Module):
"""Activated Batch Normalization
This gathers a `BatchNorm2d` and an activation function in a single module
"""
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01):
"""Creates an Activated Batch Normalization module
Parameters
----------
num_features : int
Number of feature channels in the input and output.
eps : float
Small constant to prevent numerical issues.
momentum : float
Momentum factor applied to compute running statistics as.
affine : bool
If `True` apply learned scale and shift transformation after normalization.
activation : str
Name of the activation functions, one of: `leaky_relu`, `elu` or `none`.
slope : float
Negative slope for the `leaky_relu` activation.
"""
super(ABN, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
self.momentum = momentum
self.activation = activation
self.slope = slope
if self.affine:
self.weight = nn.Parameter(torch.ones(num_features))
self.bias = nn.Parameter(torch.zeros(num_features))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
self.register_buffer('running_mean', torch.zeros(num_features))
self.register_buffer('running_var', torch.ones(num_features))
self.reset_parameters()
def reset_parameters(self):
nn.init.constant_(self.running_mean, 0)
nn.init.constant_(self.running_var, 1)
if self.affine:
nn.init.constant_(self.weight, 1)
nn.init.constant_(self.bias, 0)
def forward(self, x):
x = functional.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias,
self.training, self.momentum, self.eps)
if self.activation == ACT_RELU:
return functional.relu(x, inplace=True)
elif self.activation == ACT_LEAKY_RELU:
return functional.leaky_relu(x, negative_slope=self.slope, inplace=True)
elif self.activation == ACT_ELU:
return functional.elu(x, inplace=True)
else:
return x
def __repr__(self):
rep = '{name}({num_features}, eps={eps}, momentum={momentum},' \
' affine={affine}, activation={activation}'
if self.activation == "leaky_relu":
rep += ', slope={slope})'
else:
rep += ')'
return rep.format(name=self.__class__.__name__, **self.__dict__)
class InPlaceABN(ABN):
"""InPlace Activated Batch Normalization"""
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01):
"""Creates an InPlace Activated Batch Normalization module
Parameters
----------
num_features : int
Number of feature channels in the input and output.
eps : float
Small constant to prevent numerical issues.
momentum : float
Momentum factor applied to compute running statistics as.
affine : bool
If `True` apply learned scale and shift transformation after normalization.
activation : str
Name of the activation functions, one of: `leaky_relu`, `elu` or `none`.
slope : float
Negative slope for the `leaky_relu` activation.
"""
super(InPlaceABN, self).__init__(num_features, eps, momentum, affine, activation, slope)
def forward(self, x):
x, _, _ = inplace_abn(x, self.weight, self.bias, self.running_mean, self.running_var,
self.training, self.momentum, self.eps, self.activation, self.slope)
return x
class InPlaceABNSync(ABN):
"""InPlace Activated Batch Normalization with cross-GPU synchronization
This assumes that it will be replicated across GPUs using the same mechanism as in `nn.DistributedDataParallel`.
"""
def forward(self, x):
x, _, _ = inplace_abn_sync(x, self.weight, self.bias, self.running_mean, self.running_var,
self.training, self.momentum, self.eps, self.activation, self.slope)
return x
def __repr__(self):
rep = '{name}({num_features}, eps={eps}, momentum={momentum},' \
' affine={affine}, activation={activation}'
if self.activation == "leaky_relu":
rep += ', slope={slope})'
else:
rep += ')'
return rep.format(name=self.__class__.__name__, **self.__dict__)