Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-License-Identifier: MIT
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import onnxruntime as ort
|
5 |
+
import argparse
|
6 |
+
import numpy as np
|
7 |
+
from dependencies.box_utils import predict
|
8 |
+
|
9 |
+
# ------------------------------------------------------------------------------------------------------------------------------------------------
|
10 |
+
# Face detection using UltraFace-320 onnx model
|
11 |
+
os.system("wget https://github.com/AK391/models/raw/main/vision/body_analysis/ultraface/models/version-RFB-320.onnx")
|
12 |
+
face_detector_onnx = "version-RFB-320.onnx"
|
13 |
+
|
14 |
+
# Start from ORT 1.10, ORT requires explicitly setting the providers parameter if you want to use execution providers
|
15 |
+
# other than the default CPU provider (as opposed to the previous behavior of providers getting set/registered by default
|
16 |
+
# based on the build flags) when instantiating InferenceSession.
|
17 |
+
# For example, if NVIDIA GPU is available and ORT Python package is built with CUDA, then call API as following:
|
18 |
+
# ort.InferenceSession(path/to/model, providers=['CUDAExecutionProvider'])
|
19 |
+
face_detector = ort.InferenceSession(face_detector_onnx)
|
20 |
+
|
21 |
+
# scale current rectangle to box
|
22 |
+
def scale(box):
|
23 |
+
width = box[2] - box[0]
|
24 |
+
height = box[3] - box[1]
|
25 |
+
maximum = max(width, height)
|
26 |
+
dx = int((maximum - width)/2)
|
27 |
+
dy = int((maximum - height)/2)
|
28 |
+
|
29 |
+
bboxes = [box[0] - dx, box[1] - dy, box[2] + dx, box[3] + dy]
|
30 |
+
return bboxes
|
31 |
+
|
32 |
+
# crop image
|
33 |
+
def cropImage(image, box):
|
34 |
+
num = image[box[1]:box[3], box[0]:box[2]]
|
35 |
+
return num
|
36 |
+
|
37 |
+
# face detection method
|
38 |
+
def faceDetector(orig_image, threshold = 0.7):
|
39 |
+
image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
|
40 |
+
image = cv2.resize(image, (320, 240))
|
41 |
+
image_mean = np.array([127, 127, 127])
|
42 |
+
image = (image - image_mean) / 128
|
43 |
+
image = np.transpose(image, [2, 0, 1])
|
44 |
+
image = np.expand_dims(image, axis=0)
|
45 |
+
image = image.astype(np.float32)
|
46 |
+
|
47 |
+
input_name = face_detector.get_inputs()[0].name
|
48 |
+
confidences, boxes = face_detector.run(None, {input_name: image})
|
49 |
+
boxes, labels, probs = predict(orig_image.shape[1], orig_image.shape[0], confidences, boxes, threshold)
|
50 |
+
return boxes, labels, probs
|
51 |
+
|
52 |
+
# ------------------------------------------------------------------------------------------------------------------------------------------------
|
53 |
+
# Main void
|
54 |
+
|
55 |
+
def inference(img):
|
56 |
+
color = (255, 128, 0)
|
57 |
+
|
58 |
+
orig_image = cv2.imread(img)
|
59 |
+
boxes, labels, probs = faceDetector(orig_image)
|
60 |
+
|
61 |
+
for i in range(boxes.shape[0]):
|
62 |
+
box = scale(boxes[i, :])
|
63 |
+
cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), color, 4)
|
64 |
+
cv2.imwrite("out.png",orig_image)
|
65 |
+
return "out.png"
|
66 |
+
|
67 |
+
|
68 |
+
gr.Interface(inference,gr.inputs.Image(type="filepath"),gr.outputs.Image(type="file")).launch()
|
69 |
+
|