Spaces:
Runtime error
Runtime error
| # SPDX-License-Identifier: MIT | |
| import cv2 | |
| import onnxruntime as ort | |
| import argparse | |
| import numpy as np | |
| from box_utils import predict | |
| import os | |
| import gradio as gr | |
| # ------------------------------------------------------------------------------------------------------------------------------------------------ | |
| # Face detection using UltraFace-320 onnx model | |
| os.system("wget https://github.com/AK391/models/raw/main/vision/body_analysis/ultraface/models/version-RFB-320.onnx") | |
| face_detector_onnx = "version-RFB-320.onnx" | |
| # Start from ORT 1.10, ORT requires explicitly setting the providers parameter if you want to use execution providers | |
| # other than the default CPU provider (as opposed to the previous behavior of providers getting set/registered by default | |
| # based on the build flags) when instantiating InferenceSession. | |
| # For example, if NVIDIA GPU is available and ORT Python package is built with CUDA, then call API as following: | |
| # ort.InferenceSession(path/to/model, providers=['CUDAExecutionProvider']) | |
| face_detector = ort.InferenceSession(face_detector_onnx) | |
| # scale current rectangle to box | |
| def scale(box): | |
| width = box[2] - box[0] | |
| height = box[3] - box[1] | |
| maximum = max(width, height) | |
| dx = int((maximum - width)/2) | |
| dy = int((maximum - height)/2) | |
| bboxes = [box[0] - dx, box[1] - dy, box[2] + dx, box[3] + dy] | |
| return bboxes | |
| # crop image | |
| def cropImage(image, box): | |
| num = image[box[1]:box[3], box[0]:box[2]] | |
| return num | |
| # face detection method | |
| def faceDetector(orig_image, threshold = 0.7): | |
| image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB) | |
| image = cv2.resize(image, (320, 240)) | |
| image_mean = np.array([127, 127, 127]) | |
| image = (image - image_mean) / 128 | |
| image = np.transpose(image, [2, 0, 1]) | |
| image = np.expand_dims(image, axis=0) | |
| image = image.astype(np.float32) | |
| input_name = face_detector.get_inputs()[0].name | |
| confidences, boxes = face_detector.run(None, {input_name: image}) | |
| boxes, labels, probs = predict(orig_image.shape[1], orig_image.shape[0], confidences, boxes, threshold) | |
| return boxes, labels, probs | |
| # ------------------------------------------------------------------------------------------------------------------------------------------------ | |
| # Main void | |
| def inference(img): | |
| color = (255, 128, 0) | |
| orig_image = cv2.imread(img) | |
| boxes, labels, probs = faceDetector(orig_image) | |
| for i in range(boxes.shape[0]): | |
| box = scale(boxes[i, :]) | |
| cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), color, 4) | |
| cv2.imwrite("out.png",orig_image) | |
| return "out.png" | |
| title="UltraFace" | |
| description="This model is a lightweight face detection model designed for edge computing devices." | |
| gr.Interface(inference,gr.inputs.Image(type="filepath",source="webcam"),gr.outputs.Image(type="file"),title=title,description=description).launch() | |