Spaces:
Runtime error
Runtime error
from PIL import Image | |
import numpy as np | |
import torch | |
from torchvision import transforms, models | |
from onnx import numpy_helper | |
import os | |
import onnxruntime as rt | |
from matplotlib.colors import hsv_to_rgb | |
import cv2 | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
import pycocotools.mask as mask_util | |
def preprocess(image): | |
# Resize | |
ratio = 800.0 / min(image.size[0], image.size[1]) | |
image = image.resize((int(ratio * image.size[0]), int(ratio * image.size[1])), Image.BILINEAR) | |
# Convert to BGR | |
image = np.array(image)[:, :, [2, 1, 0]].astype('float32') | |
# HWC -> CHW | |
image = np.transpose(image, [2, 0, 1]) | |
# Normalize | |
mean_vec = np.array([102.9801, 115.9465, 122.7717]) | |
for i in range(image.shape[0]): | |
image[i, :, :] = image[i, :, :] - mean_vec[i] | |
# Pad to be divisible of 32 | |
import math | |
padded_h = int(math.ceil(image.shape[1] / 32) * 32) | |
padded_w = int(math.ceil(image.shape[2] / 32) * 32) | |
padded_image = np.zeros((3, padded_h, padded_w), dtype=np.float32) | |
padded_image[:, :image.shape[1], :image.shape[2]] = image | |
image = padded_image | |
return image | |
# Start from ORT 1.10, ORT requires explicitly setting the providers parameter if you want to use execution providers | |
# other than the default CPU provider (as opposed to the previous behavior of providers getting set/registered by default | |
# based on the build flags) when instantiating InferenceSession. | |
# For example, if NVIDIA GPU is available and ORT Python package is built with CUDA, then call API as following: | |
# onnxruntime.InferenceSession(path/to/model, providers=['CUDAExecutionProvider']) | |
os.system("wget https://github.com/AK391/models/raw/main/vision/object_detection_segmentation/mask-rcnn/model/MaskRCNN-10.onnx") | |
sess = rt.InferenceSession("MaskRCNN-10.onnx") | |
outputs = sess.get_outputs() | |
classes = [line.rstrip('\n') for line in open('coco_classes.txt')] | |
def display_objdetect_image(image, boxes, labels, scores, masks, score_threshold=0.7): | |
# Resize boxes | |
ratio = 800.0 / min(image.size[0], image.size[1]) | |
boxes /= ratio | |
_, ax = plt.subplots(1, figsize=(12,9)) | |
image = np.array(image) | |
for mask, box, label, score in zip(masks, boxes, labels, scores): | |
# Showing boxes with score > 0.7 | |
if score <= score_threshold: | |
continue | |
# Finding contour based on mask | |
mask = mask[0, :, :, None] | |
int_box = [int(i) for i in box] | |
mask = cv2.resize(mask, (int_box[2]-int_box[0]+1, int_box[3]-int_box[1]+1)) | |
mask = mask > 0.5 | |
im_mask = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8) | |
x_0 = max(int_box[0], 0) | |
x_1 = min(int_box[2] + 1, image.shape[1]) | |
y_0 = max(int_box[1], 0) | |
y_1 = min(int_box[3] + 1, image.shape[0]) | |
mask_y_0 = max(y_0 - box[1], 0) | |
mask_y_1 = mask_y_0 + y_1 - y_0 | |
mask_x_0 = max(x_0 - box[0], 0) | |
mask_x_1 = mask_x_0 + x_1 - x_0 | |
im_mask[y_0:y_1, x_0:x_1] = mask[ | |
mask_y_0 : mask_y_1, mask_x_0 : mask_x_1 | |
] | |
im_mask = im_mask[:, :, None] | |
# OpenCV version 4.x | |
contours, hierarchy = cv2.findContours( | |
im_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE | |
) | |
image = cv2.drawContours(image, contours, -1, 25, 3) | |
rect = patches.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], linewidth=1, edgecolor='b', facecolor='none') | |
ax.annotate(classes[label] + ':' + str(np.round(score, 2)), (box[0], box[1]), color='w', fontsize=12) | |
ax.add_patch(rect) | |
ax.imshow(image) | |
plt.axis('off') | |
plt.savefig('out.png', bbox_inches='tight') | |
def inference(img): | |
input_image = Image.open(img) | |
orig_tensor = np.asarray(input_image) | |
input_tensor = preprocess(input_image) | |
output_names = list(map(lambda output: output.name, outputs)) | |
input_name = sess.get_inputs()[0].name | |
boxes, labels, scores, masks = sess.run(output_names, {input_name: input_tensor}) | |
display_objdetect_image(input_image, boxes, labels, scores, masks) | |
return 'out.png' | |
title="Mask R-CNN" | |
description="This model is a real-time neural network for object instance segmentation that detects 80 different classes." | |
examples=[["examplemask-rcnn.jpeg"]] | |
gr.Interface(inference,gr.inputs.Image(type="filepath"),gr.outputs.Image(type="file"),title=title,description=description,examples=examples).launch(enable_queue=True) | |