Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import mxnet as mx
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
+
from collections import namedtuple
|
| 5 |
+
from mxnet.gluon.data.vision import transforms
|
| 6 |
+
import os
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import imageio
|
| 11 |
+
import onnxruntime as ort
|
| 12 |
+
|
| 13 |
+
def get_image(path):
|
| 14 |
+
'''
|
| 15 |
+
Using path to image, return the RGB load image
|
| 16 |
+
'''
|
| 17 |
+
img = imageio.imread(path, pilmode='RGB')
|
| 18 |
+
return img
|
| 19 |
+
|
| 20 |
+
# Pre-processing function for ImageNet models using numpy
|
| 21 |
+
def preprocess(img):
|
| 22 |
+
'''
|
| 23 |
+
Preprocessing required on the images for inference with mxnet gluon
|
| 24 |
+
The function takes loaded image and returns processed tensor
|
| 25 |
+
'''
|
| 26 |
+
img = np.array(Image.fromarray(img).resize((224, 224))).astype(np.float32)
|
| 27 |
+
img[:, :, 0] -= 123.68
|
| 28 |
+
img[:, :, 1] -= 116.779
|
| 29 |
+
img[:, :, 2] -= 103.939
|
| 30 |
+
img[:,:,[0,1,2]] = img[:,:,[2,1,0]]
|
| 31 |
+
img = img.transpose((2, 0, 1))
|
| 32 |
+
img = np.expand_dims(img, axis=0)
|
| 33 |
+
|
| 34 |
+
return img
|
| 35 |
+
|
| 36 |
+
mx.test_utils.download('https://s3.amazonaws.com/model-server/inputs/kitten.jpg')
|
| 37 |
+
|
| 38 |
+
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/synset.txt')
|
| 39 |
+
with open('synset.txt', 'r') as f:
|
| 40 |
+
labels = [l.rstrip() for l in f]
|
| 41 |
+
|
| 42 |
+
os.system("wget https://github.com/AK391/models/raw/main/vision/classification/caffenet/model/caffenet-12.onnx")
|
| 43 |
+
|
| 44 |
+
ort_session = ort.InferenceSession("caffenet-12.onnx")
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def predict(path):
|
| 48 |
+
img_batch = preprocess(get_image(path))
|
| 49 |
+
|
| 50 |
+
outputs = ort_session.run(
|
| 51 |
+
None,
|
| 52 |
+
{"data_0": img_batch.astype(np.float32)},
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
a = np.argsort(-outputs[0].flatten())
|
| 56 |
+
results = {}
|
| 57 |
+
for i in a[0:5]:
|
| 58 |
+
results[labels[i]]=float(outputs[0][0][i])
|
| 59 |
+
return results
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
title="GoogleNet"
|
| 63 |
+
description="GoogLeNet is the name of a convolutional neural network for classification, which competed in the ImageNet Large Scale Visual Recognition Challenge in 2014."
|
| 64 |
+
|
| 65 |
+
examples=[['catonnx.jpg']]
|
| 66 |
+
gr.Interface(predict,gr.inputs.Image(type='filepath'),"label",title=title,description=description,examples=examples).launch(enable_queue=True,debug=True)
|