Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import mxnet as mx
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
from collections import namedtuple
|
5 |
+
from mxnet.gluon.data.vision import transforms
|
6 |
+
from mxnet.contrib.onnx.onnx2mx.import_model import import_model
|
7 |
+
import os
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
mx.test_utils.download('https://s3.amazonaws.com/model-server/inputs/kitten.jpg')
|
11 |
+
|
12 |
+
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/synset.txt')
|
13 |
+
with open('synset.txt', 'r') as f:
|
14 |
+
labels = [l.rstrip() for l in f]
|
15 |
+
|
16 |
+
os.system("wget https://github.com/onnx/models/raw/main/vision/classification/alexnet/model/bvlcalexnet-12.onnx")
|
17 |
+
|
18 |
+
# Enter path to the ONNX model file
|
19 |
+
|
20 |
+
sym, arg_params, aux_params = import_model('bvlcalexnet-12.onnx')
|
21 |
+
|
22 |
+
Batch = namedtuple('Batch', ['data'])
|
23 |
+
def get_image(path, show=False):
|
24 |
+
img = mx.image.imread(path)
|
25 |
+
if img is None:
|
26 |
+
return None
|
27 |
+
if show:
|
28 |
+
plt.imshow(img.asnumpy())
|
29 |
+
plt.axis('off')
|
30 |
+
return img
|
31 |
+
|
32 |
+
def preprocess(img):
|
33 |
+
transform_fn = transforms.Compose([
|
34 |
+
transforms.Resize(256),
|
35 |
+
transforms.CenterCrop(224),
|
36 |
+
transforms.ToTensor(),
|
37 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
38 |
+
])
|
39 |
+
img = transform_fn(img)
|
40 |
+
img = img.expand_dims(axis=0)
|
41 |
+
return img
|
42 |
+
|
43 |
+
def predict(path):
|
44 |
+
img = get_image(path, show=True)
|
45 |
+
img = preprocess(img)
|
46 |
+
mod.forward(Batch([img]))
|
47 |
+
# Take softmax to generate probabilities
|
48 |
+
scores = mx.ndarray.softmax(mod.get_outputs()[0]).asnumpy()
|
49 |
+
# print the top-5 inferences class
|
50 |
+
scores = np.squeeze(scores)
|
51 |
+
a = np.argsort(scores)[::-1]
|
52 |
+
results = {}
|
53 |
+
for i in a[0:5]:
|
54 |
+
results[labels[i]] = float(scores[i])
|
55 |
+
return results
|
56 |
+
|
57 |
+
# Determine and set context
|
58 |
+
if len(mx.test_utils.list_gpus())==0:
|
59 |
+
ctx = mx.cpu()
|
60 |
+
else:
|
61 |
+
ctx = mx.gpu(0)
|
62 |
+
# Load module
|
63 |
+
mod = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
|
64 |
+
mod.bind(for_training=False, data_shapes=[('data', (1,3,224,224))],
|
65 |
+
label_shapes=mod._label_shapes)
|
66 |
+
mod.set_params(arg_params, aux_params, allow_missing=True, allow_extra=True)
|
67 |
+
|
68 |
+
title="SqueezeNet"
|
69 |
+
description="SqueezeNet is a small CNN which achieves AlexNet level accuracy on ImageNet with 50x fewer parameters. SqueezeNet requires less communication across servers during distributed training, less bandwidth to export a new model from the cloud to an autonomous car and more feasible to deploy on FPGAs and other hardware with limited memory."
|
70 |
+
|
71 |
+
examples=[['catonnx.jpg']]
|
72 |
+
gr.Interface(predict,gr.inputs.Image(type='filepath'),"label",title=title,description=description,examples=examples).launch(enable_queue=True)
|