Spaces:
Runtime error
Runtime error
update image input to pillow
Browse files- app.py +10 -8
- lib/image_captioning.py +9 -7
- lib/pace_model.py +4 -3
- requirements.txt +1 -0
app.py
CHANGED
@@ -3,6 +3,8 @@ from pathlib import Path
|
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
|
|
|
|
|
6 |
from lib.image_captioning import ImageCaptioning
|
7 |
from lib.pace_model import PaceModel
|
8 |
|
@@ -15,18 +17,18 @@ class AudioPalette:
|
|
15 |
self.pace_model = PaceModel(height, width, channels, resnet50_tf_model_weights_path, pace_model_weights_path)
|
16 |
self.image_captioning = ImageCaptioning()
|
17 |
|
18 |
-
def generate(self,
|
19 |
-
generated_text = self.image_captioning.query(
|
20 |
-
|
|
|
21 |
|
22 |
def main():
|
23 |
model = AudioPalette()
|
24 |
|
25 |
-
gr.themes.Monochrome()
|
26 |
demo = gr.Interface(
|
27 |
fn=model.generate,
|
28 |
inputs=gr.Image(
|
29 |
-
type="
|
30 |
label="Upload an image",
|
31 |
show_label=True,
|
32 |
container=True
|
@@ -34,15 +36,15 @@ def main():
|
|
34 |
outputs=gr.Textbox(
|
35 |
lines=1,
|
36 |
placeholder="Pace of the image and the caption",
|
37 |
-
label="
|
38 |
show_label=True,
|
39 |
container=True,
|
40 |
type="text"
|
41 |
),
|
42 |
cache_examples=False,
|
43 |
live=False,
|
44 |
-
title="
|
45 |
-
description="Provide an image to
|
46 |
)
|
47 |
|
48 |
demo.queue().launch()
|
|
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
|
6 |
+
import PIL
|
7 |
+
|
8 |
from lib.image_captioning import ImageCaptioning
|
9 |
from lib.pace_model import PaceModel
|
10 |
|
|
|
17 |
self.pace_model = PaceModel(height, width, channels, resnet50_tf_model_weights_path, pace_model_weights_path)
|
18 |
self.image_captioning = ImageCaptioning()
|
19 |
|
20 |
+
def generate(self, input_image: PIL.Image.Image):
|
21 |
+
generated_text = self.image_captioning.query(input_image)[0].get("generated_text")
|
22 |
+
pace = self.pace_model.predict(input_image)
|
23 |
+
return pace + (" - " + generated_text if generated_text is not None else "")
|
24 |
|
25 |
def main():
|
26 |
model = AudioPalette()
|
27 |
|
|
|
28 |
demo = gr.Interface(
|
29 |
fn=model.generate,
|
30 |
inputs=gr.Image(
|
31 |
+
type="pil",
|
32 |
label="Upload an image",
|
33 |
show_label=True,
|
34 |
container=True
|
|
|
36 |
outputs=gr.Textbox(
|
37 |
lines=1,
|
38 |
placeholder="Pace of the image and the caption",
|
39 |
+
label="Caption and Pace",
|
40 |
show_label=True,
|
41 |
container=True,
|
42 |
type="text"
|
43 |
),
|
44 |
cache_examples=False,
|
45 |
live=False,
|
46 |
+
title="Audio Palette",
|
47 |
+
description="Provide an image to generate appropriate background soundtrack",
|
48 |
)
|
49 |
|
50 |
demo.queue().launch()
|
lib/image_captioning.py
CHANGED
@@ -1,6 +1,8 @@
|
|
|
|
1 |
import os
|
2 |
|
3 |
import cv2
|
|
|
4 |
import requests
|
5 |
|
6 |
class ImageCaptioning:
|
@@ -12,16 +14,16 @@ class ImageCaptioning:
|
|
12 |
self.org_token = os.environ["auth_token"]
|
13 |
self.headers = { "Authorization": f"Bearer {self.org_token}" }
|
14 |
|
15 |
-
def
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
return data
|
20 |
|
21 |
-
def query(self,
|
22 |
response = requests.post(
|
23 |
self.api_endpoint,
|
24 |
headers=self.headers,
|
25 |
-
data=self.
|
26 |
)
|
|
|
27 |
return response.json()
|
|
|
1 |
+
import io
|
2 |
import os
|
3 |
|
4 |
import cv2
|
5 |
+
import PIL
|
6 |
import requests
|
7 |
|
8 |
class ImageCaptioning:
|
|
|
14 |
self.org_token = os.environ["auth_token"]
|
15 |
self.headers = { "Authorization": f"Bearer {self.org_token}" }
|
16 |
|
17 |
+
def convert_to_bytes(self, image: PIL.Image.Image):
|
18 |
+
data = io.BytesIO()
|
19 |
+
image.save(data, format="PNG")
|
20 |
+
return data.getvalue()
|
|
|
21 |
|
22 |
+
def query(self, image: PIL.Image.Image):
|
23 |
response = requests.post(
|
24 |
self.api_endpoint,
|
25 |
headers=self.headers,
|
26 |
+
data=self.convert_to_bytes(image)
|
27 |
)
|
28 |
+
print(response.json())
|
29 |
return response.json()
|
lib/pace_model.py
CHANGED
@@ -3,6 +3,7 @@ import tensorflow as tf
|
|
3 |
|
4 |
import cv2
|
5 |
import keras
|
|
|
6 |
from keras import Sequential
|
7 |
from keras.applications.resnet50 import ResNet50
|
8 |
from keras.layers import Flatten, Dense
|
@@ -45,9 +46,9 @@ class PaceModel:
|
|
45 |
|
46 |
self.resnet_model.load_weights(self.pace_model_weights_path)
|
47 |
|
48 |
-
def predict(self,
|
49 |
-
|
50 |
-
resized_image = cv2.resize(
|
51 |
image = np.expand_dims(resized_image, axis=0)
|
52 |
|
53 |
prediction = self.resnet_model.predict(image)
|
|
|
3 |
|
4 |
import cv2
|
5 |
import keras
|
6 |
+
import PIL
|
7 |
from keras import Sequential
|
8 |
from keras.applications.resnet50 import ResNet50
|
9 |
from keras.layers import Flatten, Dense
|
|
|
46 |
|
47 |
self.resnet_model.load_weights(self.pace_model_weights_path)
|
48 |
|
49 |
+
def predict(self, input_image: PIL.Image.Image):
|
50 |
+
np_image = np.array(input_image)
|
51 |
+
resized_image = cv2.resize(np_image, (self.height, self.width))
|
52 |
image = np.expand_dims(resized_image, axis=0)
|
53 |
|
54 |
prediction = self.resnet_model.predict(image)
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ gradio
|
|
2 |
keras
|
3 |
numpy
|
4 |
opencv-python
|
|
|
5 |
tensorflow
|
|
|
2 |
keras
|
3 |
numpy
|
4 |
opencv-python
|
5 |
+
pillow
|
6 |
tensorflow
|