anydoor / mydatasets /fashiontryon.py
olfp's picture
Upload 162 files
054c447 verified
raw
history blame
2.52 kB
import json
import cv2
import numpy as np
import os
from torch.utils.data import Dataset
from PIL import Image
import cv2
from .data_utils import *
from .base import BaseDataset
import albumentations as A
class FashionTryonDataset(BaseDataset):
def __init__(self, image_dir):
self.image_root = image_dir
self.data =os.listdir(self.image_root)
self.size = (512,512)
self.clip_size = (224,224)
self.dynamic = 2
def __len__(self):
return 5000
def aug_data(self, image):
transform = A.Compose([
A.RandomBrightnessContrast(p=0.5),
])
transformed = transform(image=image.astype(np.uint8))
transformed_image = transformed["image"]
return transformed_image
def check_region_size(self, image, yyxx, ratio, mode = 'max'):
pass_flag = True
H,W = image.shape[0], image.shape[1]
H,W = H * ratio, W * ratio
y1,y2,x1,x2 = yyxx
h,w = y2-y1,x2-x1
if mode == 'max':
if h > H and w > W:
pass_flag = False
elif mode == 'min':
if h < H and w < W:
pass_flag = False
return pass_flag
def get_sample(self, idx):
cloth_dir = os.path.join(self.image_root, self.data[idx])
ref_image_path = os.path.join(cloth_dir, 'target.jpg')
ref_image = cv2.imread(ref_image_path)
ref_image = cv2.cvtColor(ref_image.copy(), cv2.COLOR_BGR2RGB)
ref_mask_path = os.path.join(cloth_dir,'mask.jpg')
ref_mask = cv2.imread(ref_mask_path)[:,:,0] > 128
target_dirs = [i for i in os.listdir(cloth_dir ) if '.jpg' not in i]
target_dir_name = np.random.choice(target_dirs)
target_image_path = os.path.join(cloth_dir, target_dir_name + '.jpg')
target_image= cv2.imread(target_image_path)
tar_image = cv2.cvtColor(target_image.copy(), cv2.COLOR_BGR2RGB)
target_mask_path = os.path.join(cloth_dir, target_dir_name, 'segment.png')
tar_mask= cv2.imread(target_mask_path)[:,:,0]
target_mask = tar_mask == 7
kernel = np.ones((3, 3), dtype=np.uint8)
tar_mask = cv2.erode(target_mask.astype(np.uint8), kernel, iterations=3)
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask, max_ratio = 1.0)
sampled_time_steps = self.sample_timestep()
item_with_collage['time_steps'] = sampled_time_steps
return item_with_collage