ongkn commited on
Commit
32f64ba
1 Parent(s): 82eb50a

Upload 6 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ shape_predictor_68_face_landmarks_GTX.dat filter=lfs diff=lfs merge=lfs -text
37
+ shape_predictor_68_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
face_grab.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import cv2 as cv
3
+ import numpy as np
4
+ import dlib
5
+ from typing import Optional
6
+
7
+ logging.basicConfig(level=logging.INFO)
8
+
9
+
10
+ class FaceGrabber:
11
+ def __init__(self):
12
+ self.cascades = [
13
+ "haarcascade_frontalface_default.xml",
14
+ "haarcascade_frontalface_alt.xml",
15
+ "haarcascade_frontalface_alt2.xml",
16
+ "haarcascade_frontalface_alt_tree.xml"
17
+ ]
18
+ self.detector = dlib.get_frontal_face_detector() # load face detector
19
+ self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks_GTX.dat") # load face predictor
20
+ self.mmod = dlib.cnn_face_detection_model_v1("mmod_human_face_detector.dat") # load face detector
21
+ self.paddingBy = 0.1 # padding by 10%
22
+
23
+ def grab_faces(self, img: np.ndarray, bGray: bool = False) -> Optional[np.ndarray]:
24
+
25
+ if bGray:
26
+ img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # convert to grayscale
27
+
28
+ detected = None
29
+
30
+ if detected is None:
31
+ faces = self.detector(img) # detect faces
32
+ if len(faces) > 0:
33
+ detected = faces[0]
34
+ detected = (detected.left(), detected.top(), detected.width(), detected.height())
35
+ logging.info("Face detected by dlib")
36
+
37
+ if detected is None:
38
+ faces = self.mmod(img)
39
+ if len(faces) > 0:
40
+ detected = faces[0]
41
+ detected = (detected.rect.left(), detected.rect.top(), detected.rect.width(), detected.rect.height())
42
+ logging.info("Face detected by mmod")
43
+
44
+ if detected is None:
45
+ for cascade in self.cascades:
46
+ cascadeClassifier = cv.CascadeClassifier(cv.data.haarcascades + cascade)
47
+ faces = cascadeClassifier.detectMultiScale(img, scaleFactor=1.5, minNeighbors=5) # detect faces
48
+ if len(faces) > 0:
49
+ detected = faces[0]
50
+ logging.info(f"Face detected by {cascade}")
51
+ break
52
+
53
+ if detected is not None: # if face detected
54
+ x, y, w, h = detected # grab first face
55
+ padW = int(self.paddingBy * w) # get padding width
56
+ padH = int(self.paddingBy * h) # get padding height
57
+ imgH, imgW, _ = img.shape # get image dims
58
+ x = max(0, x - padW)
59
+ y = max(0, y - padH)
60
+ w = min(imgW - x, w + 2 * padW)
61
+ h = min(imgH - y, h + 2 * padH)
62
+ x = max(0, x - (w - detected[2]) // 2) # center the face horizontally
63
+ y = max(0, y - (h - detected[3]) // 2) # center the face vertically
64
+ face = img[y:y+h, x:x+w] # crop face
65
+ return face
66
+
67
+ return None
gradcam.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import ViTFeatureExtractor, ViTForImageClassification
2
+ import warnings
3
+ from torchvision import transforms
4
+ from datasets import load_dataset
5
+ from pytorch_grad_cam import run_dff_on_image, GradCAM
6
+ from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
7
+ from pytorch_grad_cam.utils.image import show_cam_on_image
8
+ from PIL import Image
9
+ import numpy as np
10
+ import cv2 as cv
11
+ import torch
12
+ from typing import List, Callable, Optional
13
+ import logging
14
+ from face_grab import FaceGrabber
15
+
16
+ # original borrowed from https://github.com/jacobgil/pytorch-grad-cam/blob/master/tutorials/HuggingFace.ipynb
17
+ # thanks @jacobgil
18
+ # further mods beyond this commit by @simonSlamka
19
+
20
+ warnings.filterwarnings("ignore")
21
+
22
+ logging.basicConfig(level=logging.INFO)
23
+
24
+
25
+
26
+ class HuggingfaceToTensorModelWrapper(torch.nn.Module):
27
+ def __init__(self, model):
28
+ super(HuggingfaceToTensorModelWrapper, self).__init__()
29
+ self.model = model
30
+
31
+ def forward(self, x):
32
+ return self.model(x).logits
33
+
34
+
35
+
36
+ class GradCam():
37
+ def __init__(self):
38
+ pass
39
+
40
+ def category_name_to_index(self, model, category_name):
41
+ name_to_index = dict((v, k) for k, v in model.config.id2label.items())
42
+ return name_to_index[category_name]
43
+
44
+ def run_grad_cam_on_image(self, model: torch.nn.Module,
45
+ target_layer: torch.nn.Module,
46
+ targets_for_gradcam: List[Callable],
47
+ reshape_transform: Optional[Callable],
48
+ input_tensor: torch.nn.Module,
49
+ input_image: Image,
50
+ method: Callable=GradCAM,
51
+ threshold: float=0.5):
52
+ with method(model=HuggingfaceToTensorModelWrapper(model),
53
+ target_layers=[target_layer],
54
+ reshape_transform=reshape_transform) as cam:
55
+
56
+ # Replicate the tensor for each of the categories we want to create Grad-CAM for:
57
+ repeated_tensor = input_tensor[None, :].repeat(len(targets_for_gradcam), 1, 1, 1)
58
+
59
+ batch_results = cam(input_tensor=repeated_tensor,
60
+ targets=targets_for_gradcam)
61
+ results = []
62
+ for grayscale_cam in batch_results:
63
+ grayscale_cam[grayscale_cam < threshold] = 0
64
+ visualization = show_cam_on_image(np.float32(input_image)/255,
65
+ grayscale_cam,
66
+ use_rgb=True)
67
+ # Make it weight less in the notebook:
68
+ visualization = cv.resize(visualization,
69
+ (visualization.shape[1]//2, visualization.shape[0]//2))
70
+ results.append(visualization)
71
+ return np.hstack(results)
72
+
73
+
74
+ def get_top_category(self, model, img_tensor, top_k=5):
75
+ logits = model(img_tensor.unsqueeze(0)).logits
76
+ probabilities = torch.nn.functional.softmax(logits, dim=1)
77
+ topIdx = logits.cpu()[0, :].detach().numpy().argsort()[-1]
78
+ topClass = model.config.id2label[topIdx]
79
+ topScore = probabilities[0][topIdx].item()
80
+ return [{"label": topClass, "score": topScore}]
81
+
82
+ def reshape_transform_vit_huggingface(self, x):
83
+ activations = x[:, 1:, :]
84
+ activations = activations.view(activations.shape[0],
85
+ 14, 14, activations.shape[2])
86
+ activations = activations.transpose(2, 3).transpose(1, 2)
87
+ return activations
88
+
89
+
90
+
91
+ if __name__ == "__main__":
92
+
93
+ faceGrabber = FaceGrabber()
94
+ gradCam = GradCam()
95
+
96
+ image = Image.open("Feature-Image-74.jpg").convert("RGB")
97
+ face = faceGrabber.grab_faces(np.array(image))
98
+ if face is not None:
99
+ image = Image.fromarray(face)
100
+
101
+ img_tensor = transforms.ToTensor()(image)
102
+
103
+ model = ViTForImageClassification.from_pretrained("ongkn/attraction-classifier")
104
+ targets_for_gradcam = [ClassifierOutputTarget(gradCam.category_name_to_index(model, "pos")),
105
+ ClassifierOutputTarget(gradCam.category_name_to_index(model, "neg"))]
106
+ target_layer_dff = model.vit.layernorm
107
+ target_layer_gradcam = model.vit.encoder.layer[-2].output
108
+ image_resized = image.resize((224, 224))
109
+ tensor_resized = transforms.ToTensor()(image_resized)
110
+
111
+ dff_image = run_dff_on_image(model=model,
112
+ target_layer=target_layer_dff,
113
+ classifier=model.classifier,
114
+ img_pil=image_resized,
115
+ img_tensor=tensor_resized,
116
+ reshape_transform=gradCam.reshape_transform_vit_huggingface,
117
+ n_components=5,
118
+ top_k=10,
119
+ threshold=0,
120
+ output_size=None) #(500, 500))
121
+ cv.namedWindow("DFF Image", cv.WINDOW_KEEPRATIO)
122
+ cv.imshow("DFF Image", cv.cvtColor(dff_image, cv.COLOR_BGR2RGB))
123
+ cv.resizeWindow("DFF Image", 2500, 700)
124
+ # cv.waitKey(0)
125
+ # cv.destroyAllWindows()
126
+ grad_cam_image = gradCam.run_grad_cam_on_image(model=model,
127
+ target_layer=target_layer_gradcam,
128
+ targets_for_gradcam=targets_for_gradcam,
129
+ input_tensor=tensor_resized,
130
+ input_image=image_resized,
131
+ reshape_transform=gradCam.reshape_transform_vit_huggingface,
132
+ threshold=0)
133
+ cv.namedWindow("Grad-CAM Image", cv.WINDOW_KEEPRATIO)
134
+ cv.imshow("Grad-CAM Image", grad_cam_image)
135
+ cv.resizeWindow("Grad-CAM Image", 2000, 1250)
136
+ cv.waitKey(0)
137
+ cv.destroyAllWindows()
138
+ gradCam.print_top_categories(model, tensor_resized)
mmod_human_face_detector.dat ADDED
Binary file (730 kB). View file
 
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ transformers
3
+ numpy
4
+ Pillow
5
+ opencv-python-headless
6
+ dlib
7
+ torch
8
+ grad-cam
9
+ torchvision
shape_predictor_68_face_landmarks.dat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbdc2cb80eb9aa7a758672cbfdda32ba6300efe9b6e6c7a299ff7e736b11b92f
3
+ size 99693937
shape_predictor_68_face_landmarks_GTX.dat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:249a69a1d5f2d7c714a92934d35367d46eb52dc308d46717e82d49e8386b3b80
3
+ size 66435981