Spaces:
Runtime error
Runtime error
| void normalize_image2(image p); | |
| void train_isegmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int display) | |
| { | |
| int i; | |
| float avg_loss = -1; | |
| char *base = basecfg(cfgfile); | |
| printf("%s\n", base); | |
| printf("%d\n", ngpus); | |
| network **nets = calloc(ngpus, sizeof(network*)); | |
| srand(time(0)); | |
| int seed = rand(); | |
| for(i = 0; i < ngpus; ++i){ | |
| srand(seed); | |
| cuda_set_device(gpus[i]); | |
| nets[i] = load_network(cfgfile, weightfile, clear); | |
| nets[i]->learning_rate *= ngpus; | |
| } | |
| srand(time(0)); | |
| network *net = nets[0]; | |
| image pred = get_network_image(net); | |
| image embed = pred; | |
| embed.c = 3; | |
| embed.data += embed.w*embed.h*80; | |
| int div = net->w/pred.w; | |
| assert(pred.w * div == net->w); | |
| assert(pred.h * div == net->h); | |
| int imgs = net->batch * net->subdivisions * ngpus; | |
| printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
| list *options = read_data_cfg(datacfg); | |
| char *backup_directory = option_find_str(options, "backup", "/backup/"); | |
| char *train_list = option_find_str(options, "train", "data/train.list"); | |
| list *plist = get_paths(train_list); | |
| char **paths = (char **)list_to_array(plist); | |
| printf("%d\n", plist->size); | |
| int N = plist->size; | |
| load_args args = {0}; | |
| args.w = net->w; | |
| args.h = net->h; | |
| args.threads = 32; | |
| args.scale = div; | |
| args.num_boxes = 90; | |
| args.min = net->min_crop; | |
| args.max = net->max_crop; | |
| args.angle = net->angle; | |
| args.aspect = net->aspect; | |
| args.exposure = net->exposure; | |
| args.saturation = net->saturation; | |
| args.hue = net->hue; | |
| args.size = net->w; | |
| args.classes = 80; | |
| args.paths = paths; | |
| args.n = imgs; | |
| args.m = N; | |
| args.type = ISEG_DATA; | |
| data train; | |
| data buffer; | |
| pthread_t load_thread; | |
| args.d = &buffer; | |
| load_thread = load_data(args); | |
| int epoch = (*net->seen)/N; | |
| while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ | |
| double time = what_time_is_it_now(); | |
| pthread_join(load_thread, 0); | |
| train = buffer; | |
| load_thread = load_data(args); | |
| printf("Loaded: %lf seconds\n", what_time_is_it_now()-time); | |
| time = what_time_is_it_now(); | |
| float loss = 0; | |
| if(ngpus == 1){ | |
| loss = train_network(net, train); | |
| } else { | |
| loss = train_networks(nets, ngpus, train, 4); | |
| } | |
| loss = train_network(net, train); | |
| if(display){ | |
| image tr = float_to_image(net->w/div, net->h/div, 80, train.y.vals[net->batch*(net->subdivisions-1)]); | |
| image im = float_to_image(net->w, net->h, net->c, train.X.vals[net->batch*(net->subdivisions-1)]); | |
| pred.c = 80; | |
| image mask = mask_to_rgb(tr); | |
| image prmask = mask_to_rgb(pred); | |
| image ecopy = copy_image(embed); | |
| normalize_image2(ecopy); | |
| show_image(ecopy, "embed", 1); | |
| free_image(ecopy); | |
| show_image(im, "input", 1); | |
| show_image(prmask, "pred", 1); | |
| show_image(mask, "truth", 100); | |
| free_image(mask); | |
| free_image(prmask); | |
| } | |
| if(avg_loss == -1) avg_loss = loss; | |
| avg_loss = avg_loss*.9 + loss*.1; | |
| printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen); | |
| free_data(train); | |
| if(*net->seen/N > epoch){ | |
| epoch = *net->seen/N; | |
| char buff[256]; | |
| sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); | |
| save_weights(net, buff); | |
| } | |
| if(get_current_batch(net)%100 == 0){ | |
| char buff[256]; | |
| sprintf(buff, "%s/%s.backup",backup_directory,base); | |
| save_weights(net, buff); | |
| } | |
| } | |
| char buff[256]; | |
| sprintf(buff, "%s/%s.weights", backup_directory, base); | |
| save_weights(net, buff); | |
| free_network(net); | |
| free_ptrs((void**)paths, plist->size); | |
| free_list(plist); | |
| free(base); | |
| } | |
| void predict_isegmenter(char *datafile, char *cfg, char *weights, char *filename) | |
| { | |
| network *net = load_network(cfg, weights, 0); | |
| set_batch_network(net, 1); | |
| srand(2222222); | |
| clock_t time; | |
| char buff[256]; | |
| char *input = buff; | |
| while(1){ | |
| if(filename){ | |
| strncpy(input, filename, 256); | |
| }else{ | |
| printf("Enter Image Path: "); | |
| fflush(stdout); | |
| input = fgets(input, 256, stdin); | |
| if(!input) return; | |
| strtok(input, "\n"); | |
| } | |
| image im = load_image_color(input, 0, 0); | |
| image sized = letterbox_image(im, net->w, net->h); | |
| float *X = sized.data; | |
| time=clock(); | |
| float *predictions = network_predict(net, X); | |
| image pred = get_network_image(net); | |
| image prmask = mask_to_rgb(pred); | |
| printf("Predicted: %f\n", predictions[0]); | |
| printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); | |
| show_image(sized, "orig", 1); | |
| show_image(prmask, "pred", 0); | |
| free_image(im); | |
| free_image(sized); | |
| free_image(prmask); | |
| if (filename) break; | |
| } | |
| } | |
| void demo_isegmenter(char *datacfg, char *cfg, char *weights, int cam_index, const char *filename) | |
| { | |
| printf("Classifier Demo\n"); | |
| network *net = load_network(cfg, weights, 0); | |
| set_batch_network(net, 1); | |
| srand(2222222); | |
| void * cap = open_video_stream(filename, cam_index, 0,0,0); | |
| if(!cap) error("Couldn't connect to webcam.\n"); | |
| float fps = 0; | |
| while(1){ | |
| struct timeval tval_before, tval_after, tval_result; | |
| gettimeofday(&tval_before, NULL); | |
| image in = get_image_from_stream(cap); | |
| image in_s = letterbox_image(in, net->w, net->h); | |
| network_predict(net, in_s.data); | |
| printf("\033[2J"); | |
| printf("\033[1;1H"); | |
| printf("\nFPS:%.0f\n",fps); | |
| image pred = get_network_image(net); | |
| image prmask = mask_to_rgb(pred); | |
| show_image(prmask, "Segmenter", 10); | |
| free_image(in_s); | |
| free_image(in); | |
| free_image(prmask); | |
| gettimeofday(&tval_after, NULL); | |
| timersub(&tval_after, &tval_before, &tval_result); | |
| float curr = 1000000.f/((long int)tval_result.tv_usec); | |
| fps = .9*fps + .1*curr; | |
| } | |
| } | |
| void run_isegmenter(int argc, char **argv) | |
| { | |
| if(argc < 4){ | |
| fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); | |
| return; | |
| } | |
| char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); | |
| int *gpus = 0; | |
| int gpu = 0; | |
| int ngpus = 0; | |
| if(gpu_list){ | |
| printf("%s\n", gpu_list); | |
| int len = strlen(gpu_list); | |
| ngpus = 1; | |
| int i; | |
| for(i = 0; i < len; ++i){ | |
| if (gpu_list[i] == ',') ++ngpus; | |
| } | |
| gpus = calloc(ngpus, sizeof(int)); | |
| for(i = 0; i < ngpus; ++i){ | |
| gpus[i] = atoi(gpu_list); | |
| gpu_list = strchr(gpu_list, ',')+1; | |
| } | |
| } else { | |
| gpu = gpu_index; | |
| gpus = &gpu; | |
| ngpus = 1; | |
| } | |
| int cam_index = find_int_arg(argc, argv, "-c", 0); | |
| int clear = find_arg(argc, argv, "-clear"); | |
| int display = find_arg(argc, argv, "-display"); | |
| char *data = argv[3]; | |
| char *cfg = argv[4]; | |
| char *weights = (argc > 5) ? argv[5] : 0; | |
| char *filename = (argc > 6) ? argv[6]: 0; | |
| if(0==strcmp(argv[2], "test")) predict_isegmenter(data, cfg, weights, filename); | |
| else if(0==strcmp(argv[2], "train")) train_isegmenter(data, cfg, weights, gpus, ngpus, clear, display); | |
| else if(0==strcmp(argv[2], "demo")) demo_isegmenter(data, cfg, weights, cam_index, filename); | |
| } | |