Spaces:
Runtime error
Runtime error
ondrejbiza
commited on
Commit
•
9d5d768
1
Parent(s):
65d6890
V1 works locally.
Browse files
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -6,13 +6,18 @@ from clu import checkpoint
|
|
6 |
import gradio as gr
|
7 |
import jax
|
8 |
import jax.numpy as jnp
|
|
|
|
|
|
|
|
|
9 |
|
10 |
from invariant_slot_attention.configs.clevr_with_masks.equiv_transl_scale import get_config
|
11 |
from invariant_slot_attention.lib import input_pipeline
|
|
|
12 |
from invariant_slot_attention.lib import utils
|
13 |
|
14 |
|
15 |
-
def load_model(config):
|
16 |
rng = jax.random.PRNGKey(42)
|
17 |
rng, data_rng = jax.random.split(rng)
|
18 |
|
@@ -42,27 +47,150 @@ def load_model(config):
|
|
42 |
|
43 |
opt_state = None
|
44 |
state = utils.TrainState(
|
45 |
-
step=
|
46 |
variables=state_vars)
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
init_inputs = jnp.ones([1, 1, 128, 128, 3], jnp.float32)
|
53 |
-
rng, init_rng = jax.random.split(rng, num=2)
|
54 |
-
out = model.apply(
|
55 |
-
{"params": state.params, **state.variables},
|
56 |
-
video=init_inputs,
|
57 |
-
rngs={"state_init": init_rng},
|
58 |
-
train=False)
|
59 |
-
print(out.keys())
|
60 |
-
|
61 |
-
|
62 |
-
def greet(name):
|
63 |
-
return "Hello " + name + "!"
|
64 |
-
|
65 |
-
|
66 |
-
load_model(get_config())
|
67 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
68 |
demo.launch()
|
|
|
6 |
import gradio as gr
|
7 |
import jax
|
8 |
import jax.numpy as jnp
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
import tensorflow as tf
|
12 |
+
from huggingface_hub import snapshot_download
|
13 |
|
14 |
from invariant_slot_attention.configs.clevr_with_masks.equiv_transl_scale import get_config
|
15 |
from invariant_slot_attention.lib import input_pipeline
|
16 |
+
from invariant_slot_attention.lib import preprocessing
|
17 |
from invariant_slot_attention.lib import utils
|
18 |
|
19 |
|
20 |
+
def load_model(config, checkpoint_dir):
|
21 |
rng = jax.random.PRNGKey(42)
|
22 |
rng, data_rng = jax.random.split(rng)
|
23 |
|
|
|
47 |
|
48 |
opt_state = None
|
49 |
state = utils.TrainState(
|
50 |
+
step=42, opt_state=opt_state, params=initial_params, rng=rng,
|
51 |
variables=state_vars)
|
52 |
|
53 |
+
ckpt = checkpoint.MultihostCheckpoint(checkpoint_dir)
|
54 |
+
state = ckpt.restore(state)
|
55 |
+
|
56 |
+
return model, state, rng
|
57 |
+
|
58 |
+
|
59 |
+
def load_image(name):
|
60 |
+
img = Image.open(f"images/{name}.png")
|
61 |
+
img = img.crop((64, 29, 64 + 192, 29 + 192))
|
62 |
+
img = img.resize((128, 128))
|
63 |
+
img_ = np.array(img)
|
64 |
+
img = np.array(img)[:, :, :3] / 255.
|
65 |
+
img = jnp.array(img, dtype=jnp.float32)
|
66 |
+
return img, img_
|
67 |
+
|
68 |
+
|
69 |
+
download_path = snapshot_download(repo_id="ondrejbiza/isa")
|
70 |
+
checkpoint_dir = os.path.join(download_path, "clevr_isa_ts", "checkpoints")
|
71 |
+
|
72 |
+
model, state, rng = load_model(get_config(), checkpoint_dir)
|
73 |
+
|
74 |
+
rng, init_rng = jax.random.split(rng, num=2)
|
75 |
+
|
76 |
+
from flax import linen as nn
|
77 |
+
from typing import Callable
|
78 |
+
class DecoderWrapper(nn.Module):
|
79 |
+
decoder: Callable[[], nn.Module]
|
80 |
+
@nn.compact
|
81 |
+
def __call__(self, slots, train=False):
|
82 |
+
return self.decoder()(slots, train)
|
83 |
+
decoder_model = DecoderWrapper(decoder=model.decoder)
|
84 |
+
|
85 |
+
slots = np.zeros((11, 64), dtype=np.float32)
|
86 |
+
pos = np.zeros((11, 2), dtype=np.float32)
|
87 |
+
scale = np.zeros((11, 2), dtype=np.float32)
|
88 |
+
probs = np.zeros((11, 128, 128), dtype=np.float32)
|
89 |
+
|
90 |
+
with gr.Blocks() as demo:
|
91 |
+
|
92 |
+
with gr.Row():
|
93 |
+
|
94 |
+
with gr.Column():
|
95 |
+
gr_choose_image = gr.Dropdown(
|
96 |
+
[f"img{i}" for i in range(1, 9)], label="CLEVR Image", info="Start by a picking an image from the CLEVR dataset."
|
97 |
+
)
|
98 |
+
gr_image_1 = gr.Image(type="numpy")
|
99 |
+
gr_image_2 = gr.Image(type="numpy")
|
100 |
+
|
101 |
+
with gr.Column():
|
102 |
+
gr_slot_slider = gr.Slider(1, 11, value=1, step=1, label="Slot")
|
103 |
+
|
104 |
+
gr_y_slider = gr.Slider(-1, 1, value=0, step=0.01, label="x")
|
105 |
+
gr_x_slider = gr.Slider(-1, 1, value=0, step=0.01, label="y")
|
106 |
+
gr_sy_slider = gr.Slider(0.01, 1, value=0.1, step=0.01, label="width")
|
107 |
+
gr_sx_slider = gr.Slider(0.01, 1, value=0.1, step=0.01, label="height")
|
108 |
+
|
109 |
+
gr_button = gr.Button("Render")
|
110 |
+
|
111 |
+
def update_image_and_segmentation(name, idx):
|
112 |
+
idx = idx - 1
|
113 |
+
|
114 |
+
img_input, img = load_image(name)
|
115 |
+
out = model.apply(
|
116 |
+
{"params": state.params, **state.variables},
|
117 |
+
video=img_input[None, None],
|
118 |
+
rngs={"state_init": init_rng},
|
119 |
+
train=False)
|
120 |
+
|
121 |
+
probs[:] = nn.softmax(out["outputs"]["segmentation_logits"][0, 0, :, :, :, 0], axis=0)
|
122 |
+
slots_ = out["states"]
|
123 |
+
slots[:] = slots_[0, 0, :, :-4]
|
124 |
+
pos[:] = slots_[0, 0, :, -4: -2]
|
125 |
+
scale[:] = slots_[0, 0, :, -2:]
|
126 |
+
|
127 |
+
return img, (probs[idx] * 255).astype(np.uint8), float(pos[idx, 0]), \
|
128 |
+
float(pos[idx, 1]), float(scale[idx, 0]), float(scale[idx, 1])
|
129 |
+
|
130 |
+
gr_choose_image.change(
|
131 |
+
fn=update_image_and_segmentation,
|
132 |
+
inputs=[gr_choose_image, gr_slot_slider],
|
133 |
+
outputs=[gr_image_1, gr_image_2, gr_x_slider, gr_y_slider, gr_sx_slider, gr_sy_slider]
|
134 |
+
)
|
135 |
+
|
136 |
+
def update_sliders(idx):
|
137 |
+
idx = idx - 1 # 1-indexing to 0-indexing
|
138 |
+
return (probs[idx] * 255).astype(np.uint8), float(pos[idx, 0]), \
|
139 |
+
float(pos[idx, 1]), float(scale[idx, 0]), float(scale[idx, 1])
|
140 |
+
|
141 |
+
gr_slot_slider.change(
|
142 |
+
fn=update_sliders,
|
143 |
+
inputs=gr_slot_slider,
|
144 |
+
outputs=[gr_image_2, gr_x_slider, gr_y_slider, gr_sx_slider, gr_sy_slider]
|
145 |
+
)
|
146 |
+
|
147 |
+
def update_pos_x(idx, val):
|
148 |
+
pos[idx - 1, 0] = val
|
149 |
+
def update_pos_y(idx, val):
|
150 |
+
pos[idx - 1, 1] = val
|
151 |
+
def update_scale_x(idx, val):
|
152 |
+
scale[idx - 1, 0] = val
|
153 |
+
def update_scale_y(idx, val):
|
154 |
+
scale[idx - 1, 1] = val
|
155 |
+
|
156 |
+
gr_x_slider.change(
|
157 |
+
fn=update_pos_x,
|
158 |
+
inputs=[gr_slot_slider, gr_x_slider]
|
159 |
+
)
|
160 |
+
gr_y_slider.change(
|
161 |
+
fn=update_pos_y,
|
162 |
+
inputs=[gr_slot_slider, gr_y_slider]
|
163 |
+
)
|
164 |
+
gr_sx_slider.change(
|
165 |
+
fn=update_scale_x,
|
166 |
+
inputs=[gr_slot_slider, gr_sx_slider]
|
167 |
+
)
|
168 |
+
gr_sy_slider.change(
|
169 |
+
fn=update_scale_y,
|
170 |
+
inputs=[gr_slot_slider, gr_sy_slider]
|
171 |
+
)
|
172 |
+
|
173 |
+
def render(idx):
|
174 |
+
idx = idx - 1
|
175 |
+
|
176 |
+
slots_ = np.concatenate([slots, pos, scale], axis=-1)
|
177 |
+
slots_ = jnp.array(slots_)
|
178 |
+
|
179 |
+
out = decoder_model.apply(
|
180 |
+
{"params": state.params, **state.variables},
|
181 |
+
slots=slots_[None, None],
|
182 |
+
train=False
|
183 |
+
)
|
184 |
+
|
185 |
+
probs[:] = nn.softmax(out["segmentation_logits"][0, 0, :, :, :, 0], axis=0)
|
186 |
+
image = np.array(out["video"][0, 0])
|
187 |
+
image = np.clip(image, 0, 1)
|
188 |
+
return (image * 255).astype(np.uint8), (probs[idx] * 255).astype(np.uint8)
|
189 |
+
|
190 |
+
gr_button.click(
|
191 |
+
fn=render,
|
192 |
+
inputs=gr_slot_slider,
|
193 |
+
outputs=[gr_image_1, gr_image_2]
|
194 |
+
)
|
195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
demo.launch()
|