|
"""Streamlit app for Presidio.""" |
|
import logging |
|
import os |
|
import traceback |
|
|
|
import dotenv |
|
import pandas as pd |
|
import streamlit as st |
|
import streamlit.components.v1 as components |
|
from annotated_text import annotated_text |
|
from streamlit_tags import st_tags |
|
|
|
from openai_fake_data_generator import OpenAIParams |
|
from presidio_helpers import ( |
|
get_supported_entities, |
|
analyze, |
|
anonymize, |
|
annotate, |
|
create_fake_data, |
|
analyzer_engine, |
|
) |
|
|
|
st.set_page_config( |
|
page_title="Presidio demo", |
|
layout="wide", |
|
initial_sidebar_state="expanded", |
|
menu_items={ |
|
"About": "https://microsoft.github.io/presidio/", |
|
}, |
|
) |
|
|
|
dotenv.load_dotenv() |
|
logger = logging.getLogger("presidio-streamlit") |
|
|
|
|
|
allow_other_models = os.getenv("ALLOW_OTHER_MODELS", False) |
|
|
|
|
|
|
|
st.sidebar.header( |
|
""" |
|
PII De-Identification with [Microsoft Presidio](https://microsoft.github.io/presidio/) |
|
""" |
|
) |
|
|
|
|
|
model_help_text = """ |
|
Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers. |
|
Presidio supports multiple NER packages off-the-shelf, such as spaCy, Huggingface, Stanza and Flair, |
|
as well as service such as Azure Text Analytics PII. |
|
""" |
|
st_ta_key = st_ta_endpoint = "" |
|
|
|
model_list = [ |
|
"spaCy/en_core_web_lg", |
|
"flair/ner-english-large", |
|
"HuggingFace/obi/deid_roberta_i2b2", |
|
"HuggingFace/StanfordAIMI/stanford-deidentifier-base", |
|
"Azure Text Analytics PII", |
|
"Other", |
|
] |
|
if not allow_other_models: |
|
model_list.pop() |
|
|
|
st_model = st.sidebar.selectbox( |
|
"NER model package", |
|
model_list, |
|
index=2, |
|
help=model_help_text, |
|
) |
|
|
|
|
|
st_model_package = st_model.split("/")[0] |
|
|
|
|
|
st_model = ( |
|
st_model |
|
if st_model_package not in ("spaCy", "HuggingFace") |
|
else "/".join(st_model.split("/")[1:]) |
|
) |
|
|
|
if st_model == "Other": |
|
st_model_package = st.sidebar.selectbox( |
|
"NER model OSS package", options=["spaCy", "Flair", "HuggingFace"] |
|
) |
|
st_model = st.sidebar.text_input(f"NER model name", value="") |
|
|
|
if st_model == "Azure Text Analytics PII": |
|
st_ta_key = st.sidebar.text_input( |
|
f"Text Analytics key", value=os.getenv("TA_KEY", ""), type="password" |
|
) |
|
st_ta_endpoint = st.sidebar.text_input( |
|
f"Text Analytics endpoint", |
|
value=os.getenv("TA_ENDPOINT", default=""), |
|
help="For more info: https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/personally-identifiable-information/overview", |
|
) |
|
|
|
|
|
st.sidebar.warning("Note: Models might take some time to download. ") |
|
|
|
analyzer_params = (st_model_package, st_model, st_ta_key, st_ta_endpoint) |
|
logger.debug(f"analyzer_params: {analyzer_params}") |
|
|
|
st_operator = st.sidebar.selectbox( |
|
"De-identification approach", |
|
["redact", "replace", "synthesize", "highlight", "mask", "hash", "encrypt"], |
|
index=1, |
|
help=""" |
|
Select which manipulation to the text is requested after PII has been identified.\n |
|
- Redact: Completely remove the PII text\n |
|
- Replace: Replace the PII text with a constant, e.g. <PERSON>\n |
|
- Synthesize: Replace with fake values (requires an OpenAI key)\n |
|
- Highlight: Shows the original text with PII highlighted in colors\n |
|
- Mask: Replaces a requested number of characters with an asterisk (or other mask character)\n |
|
- Hash: Replaces with the hash of the PII string\n |
|
- Encrypt: Replaces with an AES encryption of the PII string, allowing the process to be reversed |
|
""", |
|
) |
|
st_mask_char = "*" |
|
st_number_of_chars = 15 |
|
st_encrypt_key = "WmZq4t7w!z%C&F)J" |
|
|
|
open_ai_params = None |
|
|
|
logger.debug(f"st_operator: {st_operator}") |
|
|
|
if st_operator == "mask": |
|
st_number_of_chars = st.sidebar.number_input( |
|
"number of chars", value=st_number_of_chars, min_value=0, max_value=100 |
|
) |
|
st_mask_char = st.sidebar.text_input( |
|
"Mask character", value=st_mask_char, max_chars=1 |
|
) |
|
elif st_operator == "encrypt": |
|
st_encrypt_key = st.sidebar.text_input("AES key", value=st_encrypt_key) |
|
elif st_operator == "synthesize": |
|
if os.getenv("OPENAI_TYPE", default="openai") == "Azure": |
|
openai_api_type = "azure" |
|
st_openai_api_base = st.sidebar.text_input( |
|
"Azure OpenAI base URL", |
|
value=os.getenv("AZURE_OPENAI_ENDPOINT", default=""), |
|
) |
|
st_deployment_name = st.sidebar.text_input( |
|
"Deployment name", value=os.getenv("AZURE_OPENAI_DEPLOYMENT", default="") |
|
) |
|
st_openai_version = st.sidebar.text_input( |
|
"OpenAI version", |
|
value=os.getenv("OPENAI_API_VERSION", default="2023-05-15"), |
|
) |
|
else: |
|
st_openai_version = openai_api_type = st_openai_api_base = None |
|
st_deployment_name = "" |
|
st_openai_key = st.sidebar.text_input( |
|
"OPENAI_KEY", |
|
value=os.getenv("OPENAI_KEY", default=""), |
|
help="See https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key for more info.", |
|
type="password", |
|
) |
|
st_openai_model = st.sidebar.text_input( |
|
"OpenAI model for text synthesis", |
|
value=os.getenv("OPENAI_MODEL", default="text-davinci-003"), |
|
help="See more here: https://platform.openai.com/docs/models/", |
|
) |
|
|
|
open_ai_params = OpenAIParams( |
|
openai_key=st_openai_key, |
|
model=st_openai_model, |
|
api_base=st_openai_api_base, |
|
deployment_name=st_deployment_name, |
|
api_version=st_openai_version, |
|
api_type=openai_api_type, |
|
) |
|
|
|
input_is_valid = True if st_openai_key else False |
|
|
|
st_threshold = st.sidebar.slider( |
|
label="Acceptance threshold", |
|
min_value=0.0, |
|
max_value=1.0, |
|
value=0.35, |
|
help="Define the threshold for accepting a detection as PII. See more here: ", |
|
) |
|
|
|
st_return_decision_process = st.sidebar.checkbox( |
|
"Add analysis explanations to findings", |
|
value=False, |
|
help="Add the decision process to the output table. " |
|
"More information can be found here: https://microsoft.github.io/presidio/analyzer/decision_process/", |
|
) |
|
|
|
|
|
st_deny_allow_expander = st.sidebar.expander( |
|
"Allowlists and denylists", |
|
expanded=False, |
|
) |
|
|
|
with st_deny_allow_expander: |
|
st_allow_list = st_tags( |
|
label="Add words to the allowlist", text="Enter word and press enter." |
|
) |
|
st.caption( |
|
"Allowlists contain words that are not considered PII, but are detected as such." |
|
) |
|
|
|
st_deny_list = st_tags( |
|
label="Add words to the denylist", text="Enter word and press enter." |
|
) |
|
st.caption( |
|
"Denylists contain words that are considered PII, but are not detected as such." |
|
) |
|
|
|
|
|
with st.expander("About this demo", expanded=False): |
|
st.info( |
|
"""Presidio is an open source customizable framework for PII detection and de-identification. |
|
\n\n[Code](https://aka.ms/presidio) | |
|
[Tutorial](https://microsoft.github.io/presidio/tutorial/) | |
|
[Installation](https://microsoft.github.io/presidio/installation/) | |
|
[FAQ](https://microsoft.github.io/presidio/faq/) |""" |
|
) |
|
|
|
st.info( |
|
""" |
|
Use this demo to: |
|
- Experiment with different off-the-shelf models and NLP packages. |
|
- Explore the different de-identification options, including redaction, masking, encryption and more. |
|
- Generate synthetic text with Microsoft Presidio and OpenAI. |
|
- Configure allow and deny lists. |
|
|
|
This demo website shows some of Presidio's capabilities. |
|
[Visit our website](https://microsoft.github.io/presidio) for more info, |
|
samples and deployment options. |
|
""" |
|
) |
|
|
|
st.markdown( |
|
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)" |
|
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)" |
|
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)" |
|
) |
|
|
|
analyzer_load_state = st.info("Starting Presidio analyzer...") |
|
|
|
analyzer_load_state.empty() |
|
|
|
|
|
with open("demo_text.txt") as f: |
|
demo_text = f.readlines() |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
col1.subheader("Input") |
|
st_text = col1.text_area( |
|
label="Enter text", value="".join(demo_text), height=400, key="text_input" |
|
) |
|
|
|
try: |
|
|
|
st_entities_expander = st.sidebar.expander("Choose entities to look for") |
|
st_entities = st_entities_expander.multiselect( |
|
label="Which entities to look for?", |
|
options=get_supported_entities(*analyzer_params), |
|
default=list(get_supported_entities(*analyzer_params)), |
|
help="Limit the list of PII entities detected. " |
|
"This list is dynamic and based on the NER model and registered recognizers. " |
|
"More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/", |
|
) |
|
|
|
|
|
analyzer_load_state = st.info("Starting Presidio analyzer...") |
|
analyzer = analyzer_engine(*analyzer_params) |
|
analyzer_load_state.empty() |
|
|
|
st_analyze_results = analyze( |
|
*analyzer_params, |
|
text=st_text, |
|
entities=st_entities, |
|
language="en", |
|
score_threshold=st_threshold, |
|
return_decision_process=st_return_decision_process, |
|
allow_list=st_allow_list, |
|
deny_list=st_deny_list, |
|
) |
|
|
|
|
|
if st_operator not in ("highlight", "synthesize"): |
|
with col2: |
|
st.subheader(f"Output") |
|
st_anonymize_results = anonymize( |
|
text=st_text, |
|
operator=st_operator, |
|
mask_char=st_mask_char, |
|
number_of_chars=st_number_of_chars, |
|
encrypt_key=st_encrypt_key, |
|
analyze_results=st_analyze_results, |
|
) |
|
st.text_area( |
|
label="De-identified", value=st_anonymize_results.text, height=400 |
|
) |
|
elif st_operator == "synthesize": |
|
with col2: |
|
st.subheader(f"OpenAI Generated output") |
|
fake_data = create_fake_data( |
|
st_text, |
|
st_analyze_results, |
|
open_ai_params, |
|
) |
|
st.text_area(label="Synthetic data", value=fake_data, height=400) |
|
else: |
|
st.subheader("Highlighted") |
|
annotated_tokens = annotate(text=st_text, analyze_results=st_analyze_results) |
|
|
|
annotated_text(*annotated_tokens) |
|
|
|
|
|
st.subheader( |
|
"Findings" |
|
if not st_return_decision_process |
|
else "Findings with decision factors" |
|
) |
|
if st_analyze_results: |
|
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results]) |
|
df["text"] = [st_text[res.start : res.end] for res in st_analyze_results] |
|
|
|
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename( |
|
{ |
|
"entity_type": "Entity type", |
|
"text": "Text", |
|
"start": "Start", |
|
"end": "End", |
|
"score": "Confidence", |
|
}, |
|
axis=1, |
|
) |
|
df_subset["Text"] = [st_text[res.start : res.end] for res in st_analyze_results] |
|
if st_return_decision_process: |
|
analysis_explanation_df = pd.DataFrame.from_records( |
|
[r.analysis_explanation.to_dict() for r in st_analyze_results] |
|
) |
|
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1) |
|
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True) |
|
else: |
|
st.text("No findings") |
|
|
|
except Exception as e: |
|
print(e) |
|
traceback.print_exc() |
|
st.error(e) |
|
|
|
components.html( |
|
""" |
|
<script type="text/javascript"> |
|
(function(c,l,a,r,i,t,y){ |
|
c[a]=c[a]||function(){(c[a].q=c[a].q||[]).push(arguments)}; |
|
t=l.createElement(r);t.async=1;t.src="https://www.clarity.ms/tag/"+i; |
|
y=l.getElementsByTagName(r)[0];y.parentNode.insertBefore(t,y); |
|
})(window, document, "clarity", "script", "h7f8bp42n8"); |
|
</script> |
|
""" |
|
) |
|
|