|
import logging |
|
from typing import Optional, List, Tuple, Set |
|
|
|
from presidio_analyzer import ( |
|
RecognizerResult, |
|
EntityRecognizer, |
|
AnalysisExplanation, |
|
) |
|
from presidio_analyzer.nlp_engine import NlpArtifacts |
|
|
|
logger = logging.getLogger("presidio-analyzer") |
|
|
|
try: |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForTokenClassification, |
|
pipeline, |
|
models, |
|
) |
|
from transformers.models.bert.modeling_bert import BertForTokenClassification |
|
except ImportError: |
|
logger.error("transformers is not installed") |
|
|
|
|
|
|
|
class TransformersRecognizer(EntityRecognizer): |
|
""" |
|
Wrapper for a transformers model, if needed to be used within Presidio Analyzer. |
|
|
|
:example: |
|
>from presidio_analyzer import AnalyzerEngine, RecognizerRegistry |
|
|
|
>transformers_recognizer = TransformersRecognizer() |
|
|
|
>registry = RecognizerRegistry() |
|
>registry.add_recognizer(transformers_recognizer) |
|
|
|
>analyzer = AnalyzerEngine(registry=registry) |
|
|
|
>results = analyzer.analyze( |
|
> "My name is Christopher and I live in Irbid.", |
|
> language="en", |
|
> return_decision_process=True, |
|
>) |
|
>for result in results: |
|
> print(result) |
|
> print(result.analysis_explanation) |
|
|
|
|
|
""" |
|
|
|
ENTITIES = [ |
|
"LOCATION", |
|
"PERSON", |
|
"ORGANIZATION", |
|
"AGE", |
|
"ID", |
|
"PHONE_NUMBER", |
|
"EMAIL", |
|
"DATE", |
|
|
|
] |
|
|
|
DEFAULT_EXPLANATION = "Identified as {} by transformers's Named Entity Recognition" |
|
|
|
CHECK_LABEL_GROUPS = [ |
|
({"LOCATION"}, {"LOC", "HOSP"}), |
|
({"PERSON"}, {"PER", "PERSON", "STAFF","PATIENT"}), |
|
({"ORGANIZATION"}, {"ORGANIZATION", "ORG", "PATORG"}), |
|
({"AGE"}, {"AGE"}), |
|
({"ID"}, {"ID"}), |
|
({"EMAIL"}, {"EMAIL"}), |
|
({"DATE"}, {"DATE"}), |
|
({"PHONE_NUMBER"}, {"PHONE"}), |
|
|
|
] |
|
|
|
PRESIDIO_EQUIVALENCES = { |
|
"PER": "PERSON", |
|
"LOC": "LOCATION", |
|
"ORG": "ORGANIZATION", |
|
"AGE": "AGE", |
|
"ID": "ID", |
|
"EMAIL": "EMAIL", |
|
"PATIENT": "PERSON", |
|
"STAFF": "PERSON", |
|
"HOSP": "LOCATION", |
|
"PATORG": "ORGANIZATION", |
|
"DATE": "DATE_TIME", |
|
"PHONE": "PHONE_NUMBER", |
|
} |
|
|
|
DEFAULT_MODEL_PATH = "obi/deid_roberta_i2b2" |
|
|
|
def __init__( |
|
self, |
|
supported_entities: Optional[List[str]] = None, |
|
check_label_groups: Optional[Tuple[Set, Set]] = None, |
|
model: Optional[BertForTokenClassification] = None, |
|
model_path: Optional[str] = None, |
|
): |
|
if not model and not model_path: |
|
model_path = self.DEFAULT_MODEL_PATH |
|
logger.warning( |
|
f"Both 'model' and 'model_path' arguments are None. Using default model_path={model_path}" |
|
) |
|
|
|
if model and model_path: |
|
logger.warning( |
|
f"Both 'model' and 'model_path' arguments were provided. Ignoring the model_path" |
|
) |
|
|
|
self.check_label_groups = ( |
|
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS |
|
) |
|
|
|
supported_entities = supported_entities if supported_entities else self.ENTITIES |
|
self.model = ( |
|
model |
|
if model |
|
else pipeline( |
|
"ner", |
|
model=AutoModelForTokenClassification.from_pretrained(model_path), |
|
tokenizer=AutoTokenizer.from_pretrained(model_path), |
|
aggregation_strategy="simple", |
|
) |
|
) |
|
|
|
super().__init__( |
|
supported_entities=supported_entities, name="transformers Analytics", |
|
) |
|
|
|
def load(self) -> None: |
|
"""Load the model, not used. Model is loaded during initialization.""" |
|
pass |
|
|
|
def get_supported_entities(self) -> List[str]: |
|
""" |
|
Return supported entities by this model. |
|
|
|
:return: List of the supported entities. |
|
""" |
|
return self.supported_entities |
|
|
|
|
|
def analyze( |
|
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None |
|
) -> List[RecognizerResult]: |
|
""" |
|
Analyze text using Text Analytics. |
|
|
|
:param text: The text for analysis. |
|
:param entities: Not working properly for this recognizer. |
|
:param nlp_artifacts: Not used by this recognizer. |
|
:return: The list of Presidio RecognizerResult constructed from the recognized |
|
transformers detections. |
|
""" |
|
|
|
results = [] |
|
ner_results = self.model(text) |
|
|
|
|
|
if not entities: |
|
entities = self.supported_entities |
|
|
|
for entity in entities: |
|
if entity not in self.supported_entities: |
|
continue |
|
|
|
for res in ner_results: |
|
if not self.__check_label( |
|
entity, res["entity_group"], self.check_label_groups |
|
): |
|
continue |
|
textual_explanation = self.DEFAULT_EXPLANATION.format( |
|
res["entity_group"] |
|
) |
|
explanation = self.build_transformers_explanation( |
|
round(res["score"], 2), textual_explanation |
|
) |
|
transformers_result = self._convert_to_recognizer_result( |
|
res, explanation |
|
) |
|
|
|
results.append(transformers_result) |
|
|
|
return results |
|
|
|
def _convert_to_recognizer_result(self, res, explanation) -> RecognizerResult: |
|
|
|
entity_type = self.PRESIDIO_EQUIVALENCES.get( |
|
res["entity_group"], res["entity_group"] |
|
) |
|
transformers_score = round(res["score"], 2) |
|
|
|
transformers_results = RecognizerResult( |
|
entity_type=entity_type, |
|
start=res["start"], |
|
end=res["end"], |
|
score=transformers_score, |
|
analysis_explanation=explanation, |
|
) |
|
|
|
return transformers_results |
|
|
|
def build_transformers_explanation( |
|
self, original_score: float, explanation: str |
|
) -> AnalysisExplanation: |
|
""" |
|
Create explanation for why this result was detected. |
|
|
|
:param original_score: Score given by this recognizer |
|
:param explanation: Explanation string |
|
:return: |
|
""" |
|
explanation = AnalysisExplanation( |
|
recognizer=self.__class__.__name__, |
|
original_score=original_score, |
|
textual_explanation=explanation, |
|
) |
|
return explanation |
|
|
|
@staticmethod |
|
def __check_label( |
|
entity: str, label: str, check_label_groups: Tuple[Set, Set] |
|
) -> bool: |
|
return any( |
|
[entity in egrp and label in lgrp for egrp, lgrp in check_label_groups] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry |
|
|
|
transformers_recognizer = ( |
|
TransformersRecognizer() |
|
) |
|
|
|
registry = RecognizerRegistry() |
|
registry.add_recognizer(transformers_recognizer) |
|
|
|
analyzer = AnalyzerEngine(registry=registry) |
|
|
|
results = analyzer.analyze( |
|
"My name is Christopher and I live in Irbid.", |
|
language="en", |
|
return_decision_process=True, |
|
) |
|
for result in results: |
|
print(result) |
|
print(result.analysis_explanation) |
|
|