IDX-Chronos / app.py
omniverse1's picture
update app 1.2
961b441 verified
raw
history blame
12.1 kB
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from datetime import datetime, timedelta
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import warnings
warnings.filterwarnings('ignore')
import spaces
# Import utility functions
from utils import (
get_indonesian_stocks,
calculate_technical_indicators,
generate_trading_signals,
get_fundamental_data,
format_large_number,
predict_prices,
create_price_chart,
create_technical_chart,
create_prediction_chart
)
from config import IDX_STOCKS, TECHNICAL_INDICATORS, PREDICTION_CONFIG
# Load Chronos-Bolt model
@spaces.GPU(duration=120)
def load_model():
"""Load the Amazon Chronos-Bolt model for time series forecasting"""
model = AutoModelForCausalLM.from_pretrained(
"amazon/chronos-bolt-base",
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("amazon/chronos-bolt-base")
return model, tokenizer
# Initialize model
model, tokenizer = load_model()
def get_stock_data(symbol, period="1y"):
"""Fetch historical stock data using yfinance"""
try:
stock = yf.Ticker(symbol)
data = stock.history(period=period)
if data.empty:
return None, None
return data, stock
except Exception as e:
print(f"Error fetching data for {symbol}: {e}")
return None, None
def analyze_stock(symbol, prediction_days=30):
"""Main analysis function"""
# Get stock data
data, stock = get_stock_data(symbol)
if data is None or stock is None:
return None, None, None, None, None, None
# Get fundamental data
fundamental_info = get_fundamental_data(stock)
# Calculate technical indicators
indicators = calculate_technical_indicators(data)
# Generate trading signals
signals = generate_trading_signals(data, indicators)
# Make predictions using Chronos-Bolt
predictions = predict_prices(data, model, tokenizer, prediction_days)
# Create charts
price_chart = create_price_chart(data, indicators)
technical_chart = create_technical_chart(data, indicators)
prediction_chart = create_prediction_chart(data, predictions)
return fundamental_info, indicators, signals, price_chart, technical_chart, prediction_chart
def create_ui():
"""Create the Gradio interface"""
with gr.Blocks(
title="IDX Stock Analysis & Prediction",
theme=gr.themes.Soft(),
css="""
.header {
text-align: center;
padding: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
margin-bottom: 20px;
}
.metric-card {
background: white;
padding: 15px;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
margin: 10px 0;
}
.positive { color: #10b981; font-weight: bold; }
.negative { color: #ef4444; font-weight: bold; }
.neutral { color: #6b7280; font-weight: bold; }
"""
) as demo:
with gr.Row():
gr.HTML("""
<div class="header">
<h1>๐Ÿ“ˆ IDX Stock Analysis & Prediction</h1>
<p>Advanced Technical Analysis & AI-Powered Predictions for Indonesian Stock Exchange</p>
<p><a href="https://huggingface.co/spaces/akhaliq/anycoder" style="color: white;">Built with anycoder</a></p>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
stock_selector = gr.Dropdown(
choices=list(IDX_STOCKS.keys()),
value="BBCA.JK",
label="๐Ÿ“Š Select Indonesian Stock",
info="Choose from top IDX stocks"
)
with gr.Row():
prediction_days = gr.Slider(
minimum=7,
maximum=90,
value=30,
step=7,
label="๐Ÿ”ฎ Prediction Days"
)
analyze_btn = gr.Button(
"๐Ÿš€ Analyze Stock",
variant="primary",
size="lg"
)
# Results sections
with gr.Tabs() as tabs:
# Tab 1: Stock Overview & Fundamentals
with gr.TabItem("๐Ÿ“Š Stock Overview"):
with gr.Row():
company_name = gr.Textbox(label="Company Name", interactive=False)
current_price = gr.Number(label="Current Price (IDR)", interactive=False)
market_cap = gr.Textbox(label="Market Cap", interactive=False)
with gr.Row():
pe_ratio = gr.Number(label="P/E Ratio", interactive=False)
dividend_yield = gr.Number(label="Dividend Yield (%)", interactive=False)
volume = gr.Number(label="Volume", interactive=False)
fundamentals_text = gr.Textbox(
label="๐Ÿ“‹ Company Information",
lines=8,
interactive=False
)
# Tab 2: Technical Analysis
with gr.TabItem("๐Ÿ“ˆ Technical Analysis"):
price_chart = gr.Plot(label="Price & Technical Indicators")
technical_chart = gr.Plot(label="Technical Indicators Analysis")
with gr.Row():
rsi_value = gr.Number(label="RSI (14)", interactive=False)
macd_signal = gr.Textbox(label="MACD Signal", interactive=False)
bb_position = gr.Textbox(label="Bollinger Band Position", interactive=False)
# Tab 3: Trading Signals
with gr.TabItem("๐ŸŽฏ Trading Signals"):
with gr.Row():
overall_signal = gr.Textbox(label="๐Ÿšฆ Overall Signal", interactive=False, scale=2)
signal_strength = gr.Slider(
minimum=0,
maximum=100,
label="Signal Strength",
interactive=False
)
signals_text = gr.Textbox(
label="๐Ÿ“ Detailed Signals",
lines=10,
interactive=False
)
with gr.Row():
support_level = gr.Number(label="Support Level", interactive=False)
resistance_level = gr.Number(label="Resistance Level", interactive=False)
stop_loss = gr.Number(label="Recommended Stop Loss", interactive=False)
# Tab 4: AI Predictions
with gr.TabItem("๐Ÿค– AI Predictions"):
prediction_chart = gr.Plot(label="Price Forecast (Chronos-Bolt)")
with gr.Row():
predicted_high = gr.Number(label="Predicted High (30d)", interactive=False)
predicted_low = gr.Number(label="Predicted Low (30d)", interactive=False)
predicted_change = gr.Number(label="Expected Change (%)", interactive=False)
prediction_summary = gr.Textbox(
label="๐Ÿ“Š Prediction Analysis",
lines=5,
interactive=False
)
# Event handlers
def update_analysis(symbol, pred_days):
fundamental_info, indicators, signals, price_chart, technical_chart, prediction_chart = analyze_stock(symbol, pred_days)
if fundamental_info is None:
return {
company_name: "Error loading data",
current_price: 0,
market_cap: "N/A",
pe_ratio: 0,
dividend_yield: 0,
volume: 0,
fundamentals_text: "Unable to fetch stock data. Please try another symbol.",
rsi_value: 0,
macd_signal: "N/A",
bb_position: "N/A",
overall_signal: "N/A",
signal_strength: 0,
signals_text: "No signals available",
support_level: 0,
resistance_level: 0,
stop_loss: 0,
predicted_high: 0,
predicted_low: 0,
predicted_change: 0,
prediction_summary: "No predictions available",
price_chart: None,
technical_chart: None,
prediction_chart: None
}
# Format outputs
return {
company_name: fundamental_info.get('name', 'N/A'),
current_price: fundamental_info.get('current_price', 0),
market_cap: format_large_number(fundamental_info.get('market_cap', 0)),
pe_ratio: fundamental_info.get('pe_ratio', 0),
dividend_yield: fundamental_info.get('dividend_yield', 0),
volume: fundamental_info.get('volume', 0),
fundamentals_text: fundamental_info.get('info', ''),
rsi_value: indicators.get('rsi', {}).get('current', 0),
macd_signal: indicators.get('macd', {}).get('signal', 'N/A'),
bb_position: indicators.get('bollinger', {}).get('position', 'N/A'),
overall_signal: signals.get('overall', 'HOLD'),
signal_strength: signals.get('strength', 50),
signals_text: signals.get('details', ''),
support_level: signals.get('support', 0),
resistance_level: signals.get('resistance', 0),
stop_loss: signals.get('stop_loss', 0),
predicted_high: indicators.get('predictions', {}).get('high_30d', 0),
predicted_low: indicators.get('predictions', {}).get('low_30d', 0),
predicted_change: indicators.get('predictions', {}).get('change_pct', 0),
prediction_summary: indicators.get('predictions', {}).get('summary', ''),
price_chart: price_chart,
technical_chart: technical_chart,
prediction_chart: prediction_chart
}
analyze_btn.click(
fn=update_analysis,
inputs=[stock_selector, prediction_days],
outputs=[
company_name, current_price, market_cap, pe_ratio, dividend_yield, volume, fundamentals_text,
rsi_value, macd_signal, bb_position, overall_signal, signal_strength, signals_text,
support_level, resistance_level, stop_loss, predicted_high, predicted_low, predicted_change,
prediction_summary, price_chart, technical_chart, prediction_chart
]
)
# Load initial analysis
demo.load(
fn=update_analysis,
inputs=[stock_selector, prediction_days],
outputs=[
company_name, current_price, market_cap, pe_ratio, dividend_yield, volume, fundamentals_text,
rsi_value, macd_signal, bb_position, overall_signal, signal_strength, signals_text,
support_level, resistance_level, stop_loss, predicted_high, predicted_low, predicted_change,
prediction_summary, price_chart, technical_chart, prediction_chart
]
)
return demo
if __name__ == "__main__":
demo = create_ui()
demo.launch()