OmniPart / modules /part_synthesis /models /sparse_structure_vae.py
omnipart's picture
init
491eded
"""
sparse_structure_vae.py
This file implements a Variational Autoencoder (VAE) for 3D sparse structural representations.
It's part of the TRELLIS framework and contains components for encoding volumetric data
into a latent space and decoding it back to volumetric representation.
The implementation includes:
- 3D normalization layers
- 3D residual blocks for feature extraction
- 3D downsampling and upsampling blocks for resolution changes
- Encoder (SparseStructureEncoder) that maps input volumes to a latent distribution
- Decoder (SparseStructureDecoder) that reconstructs volumes from latent codes
This VAE architecture is specifically designed for capturing structural information
in a compressed latent representation that can be sampled probabilistically.
"""
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..modules.norm import GroupNorm32, ChannelLayerNorm32
from ..modules.spatial import pixel_shuffle_3d
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
def norm_layer(norm_type: str, *args, **kwargs) -> nn.Module:
"""
Return a normalization layer based on the specified type.
Args:
norm_type: Either "group" for GroupNorm or "layer" for LayerNorm
*args, **kwargs: Arguments passed to the normalization layer
Returns:
An instance of the requested normalization layer
"""
if norm_type == "group":
return GroupNorm32(32, *args, **kwargs)
elif norm_type == "layer":
return ChannelLayerNorm32(*args, **kwargs)
else:
raise ValueError(f"Invalid norm type {norm_type}")
class ResBlock3d(nn.Module):
"""
3D Residual Block with two convolutions and a skip connection.
The block applies normalization, activation, and convolution twice,
with a skip connection from the input to the output.
"""
def __init__(
self,
channels: int,
out_channels: Optional[int] = None,
norm_type: Literal["group", "layer"] = "layer",
):
"""
Initialize a 3D ResBlock.
Args:
channels: Number of input channels
out_channels: Number of output channels (defaults to input channels)
norm_type: Type of normalization to use
"""
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
# First normalization and convolution
self.norm1 = norm_layer(norm_type, channels)
self.norm2 = norm_layer(norm_type, self.out_channels)
self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1)
# Second convolution is initialized with zeros for stable training
self.conv2 = zero_module(nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1))
# Skip connection: identity if channels match, otherwise 1x1 conv
self.skip_connection = nn.Conv3d(channels, self.out_channels, 1) if channels != self.out_channels else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the ResBlock.
Args:
x: Input tensor of shape [B, C, D, H, W]
Returns:
Output tensor after residual computation
"""
h = self.norm1(x)
h = F.silu(h)
h = self.conv1(h)
h = self.norm2(h)
h = F.silu(h)
h = self.conv2(h)
h = h + self.skip_connection(x) # Residual connection
return h
class DownsampleBlock3d(nn.Module):
"""
3D downsampling block to reduce spatial dimensions by a factor of 2.
Supports downsampling via strided convolution or average pooling.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
mode: Literal["conv", "avgpool"] = "conv",
):
"""
Initialize a 3D downsampling block.
Args:
in_channels: Number of input channels
out_channels: Number of output channels
mode: Downsampling method ("conv" or "avgpool")
"""
assert mode in ["conv", "avgpool"], f"Invalid mode {mode}"
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
if mode == "conv":
self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2)
elif mode == "avgpool":
assert in_channels == out_channels, "Pooling mode requires in_channels to be equal to out_channels"
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the downsampling block.
Args:
x: Input tensor of shape [B, C, D, H, W]
Returns:
Downsampled tensor
"""
if hasattr(self, "conv"):
return self.conv(x)
else:
return F.avg_pool3d(x, 2)
class UpsampleBlock3d(nn.Module):
"""
3D upsampling block to increase spatial dimensions by a factor of 2.
Supports upsampling via transposed convolution or nearest-neighbor interpolation.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
mode: Literal["conv", "nearest"] = "conv",
):
"""
Initialize a 3D upsampling block.
Args:
in_channels: Number of input channels
out_channels: Number of output channels
mode: Upsampling method ("conv" or "nearest")
"""
assert mode in ["conv", "nearest"], f"Invalid mode {mode}"
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
if mode == "conv":
# For pixel shuffle upsampling, we need 8x channels (2³ = 8)
self.conv = nn.Conv3d(in_channels, out_channels*8, 3, padding=1)
elif mode == "nearest":
assert in_channels == out_channels, "Nearest mode requires in_channels to be equal to out_channels"
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the upsampling block.
Args:
x: Input tensor of shape [B, C, D, H, W]
Returns:
Upsampled tensor
"""
if hasattr(self, "conv"):
x = self.conv(x)
return pixel_shuffle_3d(x, 2) # 3D pixel shuffle for upsampling
else:
return F.interpolate(x, scale_factor=2, mode="nearest")
class SparseStructureEncoder(nn.Module):
"""
Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3).
Takes a 3D volume as input and encodes it into a latent distribution (mean and logvar).
Can sample from this distribution to get a latent representation.
Args:
in_channels (int): Channels of the input.
latent_channels (int): Channels of the latent representation.
num_res_blocks (int): Number of residual blocks at each resolution.
channels (List[int]): Channels of the encoder blocks.
num_res_blocks_middle (int): Number of residual blocks in the middle.
norm_type (Literal["group", "layer"]): Type of normalization layer.
use_fp16 (bool): Whether to use FP16.
"""
def __init__(
self,
in_channels: int,
latent_channels: int,
num_res_blocks: int,
channels: List[int],
num_res_blocks_middle: int = 2,
norm_type: Literal["group", "layer"] = "layer",
use_fp16: bool = False,
):
"""
Initialize the encoder for sparse structure.
"""
super().__init__()
self.in_channels = in_channels
self.latent_channels = latent_channels
self.num_res_blocks = num_res_blocks
self.channels = channels
self.num_res_blocks_middle = num_res_blocks_middle
self.norm_type = norm_type
self.use_fp16 = use_fp16
self.dtype = torch.float16 if use_fp16 else torch.float32
# Initial projection from input to feature space
self.input_layer = nn.Conv3d(in_channels, channels[0], 3, padding=1)
# Encoder blocks with progressive downsampling
self.blocks = nn.ModuleList([])
for i, ch in enumerate(channels):
# Add residual blocks at the current resolution
self.blocks.extend([
ResBlock3d(ch, ch)
for _ in range(num_res_blocks)
])
# Add downsampling block if not at the final resolution
if i < len(channels) - 1:
self.blocks.append(
DownsampleBlock3d(ch, channels[i+1])
)
# Middle blocks at the lowest resolution
self.middle_block = nn.Sequential(*[
ResBlock3d(channels[-1], channels[-1])
for _ in range(num_res_blocks_middle)
])
# Output layer produces both mean and logvar for the latent distribution
self.out_layer = nn.Sequential(
norm_layer(norm_type, channels[-1]),
nn.SiLU(),
nn.Conv3d(channels[-1], latent_channels*2, 3, padding=1)
)
if use_fp16:
self.convert_to_fp16()
@property
def device(self) -> torch.device:
"""
Return the device of the model.
"""
return next(self.parameters()).device
def convert_to_fp16(self) -> None:
"""
Convert the torso of the model to float16.
"""
self.use_fp16 = True
self.dtype = torch.float16
self.blocks.apply(convert_module_to_f16)
self.middle_block.apply(convert_module_to_f16)
def convert_to_fp32(self) -> None:
"""
Convert the torso of the model to float32.
"""
self.use_fp16 = False
self.dtype = torch.float32
self.blocks.apply(convert_module_to_f32)
self.middle_block.apply(convert_module_to_f32)
def forward(self, x: torch.Tensor, sample_posterior: bool = False, return_raw: bool = False) -> torch.Tensor:
"""
Forward pass through the encoder.
Args:
x: Input tensor of shape [B, C, D, H, W]
sample_posterior: Whether to sample from the posterior distribution or just return mean
return_raw: Whether to return the raw outputs (z, mean, logvar) instead of just z
Returns:
Either the latent representation or a tuple of (z, mean, logvar) if return_raw=True
"""
h = self.input_layer(x)
h = h.type(self.dtype) # Convert to FP16 if needed
# Process through encoder blocks
for block in self.blocks:
h = block(h)
h = self.middle_block(h)
h = h.type(x.dtype) # Convert back to input dtype
h = self.out_layer(h)
# Split output into mean and log variance
mean, logvar = h.chunk(2, dim=1)
# Sample from the posterior if requested
if sample_posterior:
std = torch.exp(0.5 * logvar)
z = mean + std * torch.randn_like(std) # Reparameterization trick
else:
z = mean
if return_raw:
return z, mean, logvar
return z
class SparseStructureDecoder(nn.Module):
"""
Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3).
Takes a latent representation and decodes it back to a 3D volume.
Uses a symmetric architecture to the encoder with upsampling instead of downsampling.
Args:
out_channels (int): Channels of the output.
latent_channels (int): Channels of the latent representation.
num_res_blocks (int): Number of residual blocks at each resolution.
channels (List[int]): Channels of the decoder blocks.
num_res_blocks_middle (int): Number of residual blocks in the middle.
norm_type (Literal["group", "layer"]): Type of normalization layer.
use_fp16 (bool): Whether to use FP16.
"""
def __init__(
self,
out_channels: int,
latent_channels: int,
num_res_blocks: int,
channels: List[int],
num_res_blocks_middle: int = 2,
norm_type: Literal["group", "layer"] = "layer",
use_fp16: bool = False,
):
"""
Initialize the decoder for sparse structure.
"""
super().__init__()
self.out_channels = out_channels
self.latent_channels = latent_channels
self.num_res_blocks = num_res_blocks
self.channels = channels
self.num_res_blocks_middle = num_res_blocks_middle
self.norm_type = norm_type
self.use_fp16 = use_fp16
self.dtype = torch.float16 if use_fp16 else torch.float32
# Initial projection from latent space to feature space
self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1)
# Middle blocks at the lowest resolution
self.middle_block = nn.Sequential(*[
ResBlock3d(channels[0], channels[0])
for _ in range(num_res_blocks_middle)
])
# Decoder blocks with progressive upsampling
self.blocks = nn.ModuleList([])
for i, ch in enumerate(channels):
# Add residual blocks at the current resolution
self.blocks.extend([
ResBlock3d(ch, ch)
for _ in range(num_res_blocks)
])
# Add upsampling block if not at the final resolution
if i < len(channels) - 1:
self.blocks.append(
UpsampleBlock3d(ch, channels[i+1])
)
# Final output layer to generate the desired output channels
self.out_layer = nn.Sequential(
norm_layer(norm_type, channels[-1]),
nn.SiLU(),
nn.Conv3d(channels[-1], out_channels, 3, padding=1)
)
if use_fp16:
self.convert_to_fp16()
@property
def device(self) -> torch.device:
"""
Return the device of the model.
"""
return next(self.parameters()).device
def convert_to_fp16(self) -> None:
"""
Convert the torso of the model to float16.
"""
self.use_fp16 = True
self.dtype = torch.float16
self.blocks.apply(convert_module_to_f16)
self.middle_block.apply(convert_module_to_f16)
def convert_to_fp32(self) -> None:
"""
Convert the torso of the model to float32.
"""
self.use_fp16 = False
self.dtype = torch.float32
self.blocks.apply(convert_module_to_f32)
self.middle_block.apply(convert_module_to_f32)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass through the decoder.
Args:
x: Latent representation tensor of shape [B, C, D, H, W]
Returns:
Reconstructed output tensor
"""
h = self.input_layer(x)
h = h.type(self.dtype) # Convert to FP16 if needed
h = self.middle_block(h)
# Process through decoder blocks
for block in self.blocks:
h = block(h)
h = h.type(x.dtype) # Convert back to input dtype
h = self.out_layer(h)
return h