OmniPart / app_utils.py
omnipart's picture
init
491eded
import gradio as gr
import spaces
import os
import numpy as np
import trimesh
import time
import traceback
import torch
from PIL import Image
import cv2
import shutil
from segment_anything import SamAutomaticMaskGenerator, build_sam
from omegaconf import OmegaConf
from modules.bbox_gen.models.autogressive_bbox_gen import BboxGen
from modules.part_synthesis.process_utils import save_parts_outputs
from modules.inference_utils import load_img_mask, prepare_bbox_gen_input, prepare_part_synthesis_input, gen_mesh_from_bounds, vis_voxel_coords, merge_parts
from modules.part_synthesis.pipelines import OmniPartImageTo3DPipeline
from modules.label_2d_mask.visualizer import Visualizer
from transformers import AutoModelForImageSegmentation
from modules.label_2d_mask.label_parts import (
prepare_image,
get_sam_mask,
get_mask,
clean_segment_edges,
resize_and_pad_to_square,
size_th as DEFAULT_SIZE_TH
)
# Constants
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16
MAX_SEED = np.iinfo(np.int32).max
TMP_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
os.makedirs(TMP_ROOT, exist_ok=True)
sam_mask_generator = None
rmbg_model = None
bbox_gen_model = None
part_synthesis_pipeline = None
size_th = DEFAULT_SIZE_TH
def prepare_models(sam_ckpt_path, partfield_ckpt_path, bbox_gen_ckpt_path):
global sam_mask_generator, rmbg_model, bbox_gen_model, part_synthesis_pipeline
if sam_mask_generator is None:
print("Loading SAM model...")
sam_model = build_sam(checkpoint=sam_ckpt_path).to(device=DEVICE)
sam_mask_generator = SamAutomaticMaskGenerator(sam_model)
if rmbg_model is None:
print("Loading BriaRMBG 2.0 model...")
rmbg_model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True)
rmbg_model.to(DEVICE)
rmbg_model.eval()
if part_synthesis_pipeline is None:
print("Loading PartSynthesis model...")
part_synthesis_pipeline = OmniPartImageTo3DPipeline.from_pretrained('omnipart/OmniPart')
part_synthesis_pipeline.to(DEVICE)
if bbox_gen_model is None:
print("Loading BboxGen model...")
bbox_gen_config = OmegaConf.load("configs/bbox_gen.yaml").model.args
bbox_gen_config.partfield_encoder_path = partfield_ckpt_path
bbox_gen_model = BboxGen(bbox_gen_config)
bbox_gen_model.load_state_dict(torch.load(bbox_gen_ckpt_path), strict=False)
bbox_gen_model.to(DEVICE)
bbox_gen_model.eval().half()
print("Models ready")
@spaces.GPU
def process_image(image_path, threshold, req: gr.Request):
"""Process image and generate initial segmentation"""
global size_th
user_dir = os.path.join(TMP_ROOT, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
img_name = os.path.basename(image_path).split(".")[0]
size_th = threshold
img = Image.open(image_path).convert("RGB")
processed_image = prepare_image(img, rmbg_net=rmbg_model.to(DEVICE))
processed_image = resize_and_pad_to_square(processed_image)
white_bg = Image.new("RGBA", processed_image.size, (255, 255, 255, 255))
white_bg_img = Image.alpha_composite(white_bg, processed_image.convert("RGBA"))
image = np.array(white_bg_img.convert('RGB'))
rgba_path = os.path.join(user_dir, f"{img_name}_processed.png")
processed_image.save(rgba_path)
print("Generating raw SAM masks without post-processing...")
raw_masks = sam_mask_generator.generate(image)
raw_sam_vis = np.copy(image)
raw_sam_vis = np.ones_like(image) * 255
sorted_masks = sorted(raw_masks, key=lambda x: x["area"], reverse=True)
for i, mask_data in enumerate(sorted_masks):
if mask_data["area"] < size_th:
continue
color_r = (i * 50 + 80) % 256
color_g = (i * 120 + 40) % 256
color_b = (i * 180 + 20) % 256
color = np.array([color_r, color_g, color_b])
mask = mask_data["segmentation"]
raw_sam_vis[mask] = color
visual = Visualizer(image)
group_ids, pre_merge_im = get_sam_mask(
image,
sam_mask_generator,
visual,
merge_groups=None,
rgba_image=processed_image,
img_name=img_name,
save_dir=user_dir,
size_threshold=size_th
)
pre_merge_path = os.path.join(user_dir, f"{img_name}_mask_pre_merge.png")
Image.fromarray(pre_merge_im).save(pre_merge_path)
pre_split_vis = np.ones_like(image) * 255
unique_ids = np.unique(group_ids)
unique_ids = unique_ids[unique_ids >= 0]
for i, unique_id in enumerate(unique_ids):
color_r = (i * 50 + 80) % 256
color_g = (i * 120 + 40) % 256
color_b = (i * 180 + 20) % 256
color = np.array([color_r, color_g, color_b])
mask = (group_ids == unique_id)
pre_split_vis[mask] = color
y_indices, x_indices = np.where(mask)
if len(y_indices) > 0:
center_y = int(np.mean(y_indices))
center_x = int(np.mean(x_indices))
cv2.putText(pre_split_vis, str(unique_id),
(center_x, center_y), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0, 0, 0), 1, cv2.LINE_AA)
pre_split_path = os.path.join(user_dir, f"{img_name}_pre_split.png")
Image.fromarray(pre_split_vis).save(pre_split_path)
print(f"Pre-split segmentation (before disconnected parts handling) saved to {pre_split_path}")
get_mask(group_ids, image, ids=2, img_name=img_name, save_dir=user_dir)
init_seg_path = os.path.join(user_dir, f"{img_name}_mask_segments_2.png")
seg_img = Image.open(init_seg_path)
if seg_img.mode == 'RGBA':
white_bg = Image.new('RGBA', seg_img.size, (255, 255, 255, 255))
seg_img = Image.alpha_composite(white_bg, seg_img)
seg_img.save(init_seg_path)
state = {
"image": image.tolist(),
"processed_image": rgba_path,
"group_ids": group_ids.tolist() if isinstance(group_ids, np.ndarray) else group_ids,
"original_group_ids": group_ids.tolist() if isinstance(group_ids, np.ndarray) else group_ids,
"img_name": img_name,
"pre_split_path": pre_split_path,
}
return init_seg_path, pre_merge_path, state
def apply_merge(merge_input, state, req: gr.Request):
"""Apply merge parameters and generate merged segmentation"""
global sam_mask_generator
if not state:
return None, None, state
user_dir = os.path.join(TMP_ROOT, str(req.session_hash))
# Convert back from list to numpy array
image = np.array(state["image"])
# Use original group IDs instead of the most recent ones
group_ids = np.array(state["original_group_ids"])
img_name = state["img_name"]
# Load processed image from path
processed_image = Image.open(state["processed_image"])
# Display the original IDs before merging, SORTED for easier reading
unique_ids = np.unique(group_ids)
unique_ids = unique_ids[unique_ids >= 0] # Exclude background
print(f"Original segment IDs (used for merging): {sorted(unique_ids.tolist())}")
# Parse merge groups
merge_groups = None
try:
if merge_input:
merge_groups = []
group_sets = merge_input.split(';')
for group_set in group_sets:
ids = [int(x) for x in group_set.split(',')]
if ids:
# Validate if these IDs exist in the segmentation
existing_ids = [id for id in ids if id in unique_ids]
missing_ids = [id for id in ids if id not in unique_ids]
if missing_ids:
print(f"Warning: These IDs don't exist in the segmentation: {missing_ids}")
# Only add group if it has valid IDs
if existing_ids:
merge_groups.append(ids)
print(f"Valid merge group: {ids} (missing: {missing_ids if missing_ids else 'none'})")
else:
print(f"Skipping merge group with no valid IDs: {ids}")
print(f"Using merge groups: {merge_groups}")
except Exception as e:
print(f"Error parsing merge groups: {e}")
return None, None, state
# Initialize visualizer
visual = Visualizer(image)
# Generate merged segmentation starting from original IDs
# Add skip_split=True to prevent splitting after merging
new_group_ids, merged_im = get_sam_mask(
image,
sam_mask_generator,
visual,
merge_groups=merge_groups,
existing_group_ids=group_ids,
rgba_image=processed_image,
skip_split=True,
img_name=img_name,
save_dir=user_dir,
size_threshold=size_th
)
# Display the new IDs after merging for future reference
new_unique_ids = np.unique(new_group_ids)
new_unique_ids = new_unique_ids[new_unique_ids >= 0] # Exclude background
print(f"New segment IDs (after merging): {new_unique_ids.tolist()}")
# Clean edges
new_group_ids = clean_segment_edges(new_group_ids)
# Save merged segmentation visualization
get_mask(new_group_ids, image, ids=3, img_name=img_name, save_dir=user_dir)
# Path to merged segmentation
merged_seg_path = os.path.join(user_dir, f"{img_name}_mask_segments_3.png")
save_mask = new_group_ids + 1
save_mask = save_mask.reshape(518, 518, 1).repeat(3, axis=-1)
cv2.imwrite(os.path.join(user_dir, f"{img_name}_mask.exr"), save_mask.astype(np.float32))
# Update state with the new group IDs but keep original IDs unchanged
state["group_ids"] = new_group_ids.tolist() if isinstance(new_group_ids, np.ndarray) else new_group_ids
state["save_mask_path"] = os.path.join(user_dir, f"{img_name}_mask.exr")
return merged_seg_path, state
def explode_mesh(mesh, explosion_scale=0.4):
if isinstance(mesh, trimesh.Scene):
scene = mesh
elif isinstance(mesh, trimesh.Trimesh):
print("Warning: Single mesh provided, can't create exploded view")
scene = trimesh.Scene(mesh)
return scene
else:
print(f"Warning: Unexpected mesh type: {type(mesh)}")
scene = mesh
if len(scene.geometry) <= 1:
print("Only one geometry found - nothing to explode")
return scene
print(f"[EXPLODE_MESH] Starting mesh explosion with scale {explosion_scale}")
print(f"[EXPLODE_MESH] Processing {len(scene.geometry)} parts")
exploded_scene = trimesh.Scene()
part_centers = []
geometry_names = []
for geometry_name, geometry in scene.geometry.items():
if hasattr(geometry, 'vertices'):
transform = scene.graph[geometry_name][0]
vertices_global = trimesh.transformations.transform_points(
geometry.vertices, transform)
center = np.mean(vertices_global, axis=0)
part_centers.append(center)
geometry_names.append(geometry_name)
print(f"[EXPLODE_MESH] Part {geometry_name}: center = {center}")
if not part_centers:
print("No valid geometries with vertices found")
return scene
part_centers = np.array(part_centers)
global_center = np.mean(part_centers, axis=0)
print(f"[EXPLODE_MESH] Global center: {global_center}")
for i, (geometry_name, geometry) in enumerate(scene.geometry.items()):
if hasattr(geometry, 'vertices'):
if i < len(part_centers):
part_center = part_centers[i]
direction = part_center - global_center
direction_norm = np.linalg.norm(direction)
if direction_norm > 1e-6:
direction = direction / direction_norm
else:
direction = np.random.randn(3)
direction = direction / np.linalg.norm(direction)
offset = direction * explosion_scale
else:
offset = np.zeros(3)
original_transform = scene.graph[geometry_name][0].copy()
new_transform = original_transform.copy()
new_transform[:3, 3] = new_transform[:3, 3] + offset
exploded_scene.add_geometry(
geometry,
transform=new_transform,
geom_name=geometry_name
)
print(f"[EXPLODE_MESH] Part {geometry_name}: moved by {np.linalg.norm(offset):.4f}")
print("[EXPLODE_MESH] Mesh explosion complete")
return exploded_scene
@spaces.GPU(duration=90)
def generate_parts(state, seed, cfg_strength, req: gr.Request):
explode_factor=0.3
img_path = state["processed_image"]
mask_path = state["save_mask_path"]
user_dir = os.path.join(TMP_ROOT, str(req.session_hash))
img_white_bg, img_black_bg, ordered_mask_input, img_mask_vis = load_img_mask(img_path, mask_path)
img_mask_vis.save(os.path.join(user_dir, "img_mask_vis.png"))
voxel_coords = part_synthesis_pipeline.get_coords(img_black_bg, num_samples=1, seed=seed, sparse_structure_sampler_params={"steps": 25, "cfg_strength": 7.5})
voxel_coords = voxel_coords.cpu().numpy()
np.save(os.path.join(user_dir, "voxel_coords.npy"), voxel_coords)
voxel_coords_ply = vis_voxel_coords(voxel_coords)
voxel_coords_ply.export(os.path.join(user_dir, "voxel_coords_vis.ply"))
print("[INFO] Voxel coordinates saved")
bbox_gen_input = prepare_bbox_gen_input(os.path.join(user_dir, "voxel_coords.npy"), img_white_bg, ordered_mask_input)
bbox_gen_output = bbox_gen_model.generate(bbox_gen_input)
np.save(os.path.join(user_dir, "bboxes.npy"), bbox_gen_output['bboxes'][0])
bboxes_vis = gen_mesh_from_bounds(bbox_gen_output['bboxes'][0])
bboxes_vis.export(os.path.join(user_dir, "bboxes_vis.glb"))
print("[INFO] BboxGen output saved")
part_synthesis_input = prepare_part_synthesis_input(os.path.join(user_dir, "voxel_coords.npy"), os.path.join(user_dir, "bboxes.npy"), ordered_mask_input)
torch.cuda.empty_cache()
part_synthesis_output = part_synthesis_pipeline.get_slat(
img_black_bg,
part_synthesis_input['coords'],
[part_synthesis_input['part_layouts']],
part_synthesis_input['masks'],
seed=seed,
slat_sampler_params={"steps": 25, "cfg_strength": cfg_strength},
formats=['mesh', 'gaussian'],
preprocess_image=False,
)
save_parts_outputs(
part_synthesis_output,
output_dir=user_dir,
simplify_ratio=0.0,
save_video=False,
save_glb=True,
textured=False,
)
merge_parts(user_dir)
print("[INFO] PartSynthesis output saved")
bbox_mesh_path = os.path.join(user_dir, "bboxes_vis.glb")
whole_mesh_path = os.path.join(user_dir, "mesh_segment.glb")
combined_mesh = trimesh.load(whole_mesh_path)
exploded_mesh_result = explode_mesh(combined_mesh, explosion_scale=explode_factor)
exploded_mesh_result.export(os.path.join(user_dir, "exploded_parts.glb"))
exploded_mesh_path = os.path.join(user_dir, "exploded_parts.glb")
combined_gs_path = os.path.join(user_dir, "merged_gs.ply")
exploded_gs_path = os.path.join(user_dir, "exploded_gs.ply")
return bbox_mesh_path, whole_mesh_path, exploded_mesh_path, combined_gs_path, exploded_gs_path