Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (2024) Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# copy and modify from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py | |
""" PyTorch Llava model.""" | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import math | |
import numpy as np | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
import torch.nn.functional as F | |
from transformers import PreTrainedModel | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import Cache | |
from transformers.modeling_outputs import ModelOutput | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from transformers.models.auto import AutoModel, AutoModelForCausalLM, CONFIG_MAPPING | |
from transformers import LlamaForCausalLM | |
from transformers.configuration_utils import PretrainedConfig | |
logger = logging.get_logger(__name__) | |
LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"llava-hf/llava-v1.5-7b": "https://huggingface.co/llava-hf/llava-v1.5-7b/resolve/main/config.json", | |
} | |
class LlavaConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`]. It is used to instantiate an | |
Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the Llava-9B. | |
e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b) | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vision_config (`LlavaVisionConfig`, *optional*): | |
Custom vision config or dict | |
text_config (`Union[AutoConfig, dict]`, *optional*): | |
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. | |
ignore_index (`int`, *optional*, defaults to -100): | |
The ignore index for the loss function. | |
image_token_index (`int`, *optional*, defaults to 32000): | |
The image token index to encode the image prompt. | |
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): | |
The activation function used by the multimodal projector. | |
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): | |
The feature selection strategy used to select the vision feature from the CLIP backbone. | |
vision_feature_layer (`int`, *optional*, defaults to -2): | |
The index of the layer to select the vision feature. | |
vocab_size (`int`, *optional*, defaults to 32000): | |
Vocabulary size of the Llava model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`~LlavaForConditionalGeneration`] | |
Example: | |
```python | |
>>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig | |
>>> # Initializing a CLIP-vision config | |
>>> vision_config = CLIPVisionConfig() | |
>>> # Initializing a Llama config | |
>>> text_config = LlamaConfig() | |
>>> # Initializing a Llava llava-1.5-7b style configuration | |
>>> configuration = LlavaConfig(vision_config, text_config) | |
>>> # Initializing a model from the llava-1.5-7b style configuration | |
>>> model = LlavaForConditionalGeneration(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "llava" | |
is_composition = False | |
def __init__( | |
self, | |
vision_config=None, | |
text_config=None, | |
ignore_index=-100, | |
image_token_index=32000, | |
projector_hidden_act="gelu", | |
vision_feature_select_strategy="default", | |
vision_feature_layer=-2, | |
vocab_size=32000, | |
image_newline_idx=32002, | |
image_new_idx=32003, | |
**kwargs, | |
): | |
self.ignore_index = ignore_index | |
self.image_token_index = image_token_index | |
self.projector_hidden_act = projector_hidden_act | |
self.vision_feature_select_strategy = vision_feature_select_strategy | |
self.vision_feature_layer = vision_feature_layer | |
self.vocab_size = vocab_size | |
self.image_newline_idx = image_newline_idx | |
self.image_new_idx = image_new_idx | |
self.vision_config = vision_config | |
if isinstance(self.vision_config, dict): | |
vision_config["model_type"] = ( | |
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" | |
) | |
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) | |
elif vision_config is None: | |
self.vision_config = CONFIG_MAPPING["clip_vision_model"]( | |
intermediate_size=4096, | |
hidden_size=1024, | |
patch_size=14, | |
image_size=336, | |
num_hidden_layers=24, | |
num_attention_heads=16, | |
vocab_size=32000, | |
projection_dim=768, | |
) | |
self.vocab_size = self.vocab_size | |
self.text_config = text_config | |
if isinstance(self.text_config, dict): | |
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" | |
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) | |
self.vocab_size = self.text_config.vocab_size | |
elif text_config is None: | |
self.text_config = CONFIG_MAPPING["llama"]() | |
super().__init__(**kwargs) | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "LlavaConfig" | |
LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"llava-hf/llava-1.5-7b-hf", | |
"llava-hf/llava-1.5-13b-hf", | |
"llava-hf/bakLlava-v1-hf", | |
# See all Llava models at https://huggingface.co/models?filter=llava | |
] | |
class Llava3DPositionalEncoding(nn.Module): | |
def __init__(self, num_pos, dim) -> None: | |
super().__init__() | |
dim1, dim2, dim3 = self.split_dim(dim) | |
frame_position_encodings = self.create_sinusoidal_positions(num_pos, dim1) | |
height_position_encodings = self.create_sinusoidal_positions(num_pos, dim2) | |
width_position_encodings = self.create_sinusoidal_positions(num_pos, dim3) | |
self.register_buffer('frame_position_encodings', frame_position_encodings, persistent=False) | |
self.register_buffer('height_position_encodings', height_position_encodings, persistent=False) | |
self.register_buffer('width_position_encodings', width_position_encodings, persistent=False) | |
def split_dim(self, dim): | |
dim1 = dim // 3 | |
if dim1 % 2 != 0: | |
dim1 -= 1 | |
dim2 = dim // 3 | |
if dim2 % 2 != 0: | |
dim2 -= 1 | |
dim3 = dim - dim1 - dim2 | |
return dim1, dim2, dim3 | |
def create_sinusoidal_positions(self, num_pos: int, dim: int) -> torch.Tensor: | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim)) | |
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float() | |
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) | |
def forward(self, frame_position_ids, height_position_ids, width_position_ids): | |
frame_position_embeds = F.embedding(frame_position_ids, self.frame_position_encodings) | |
height_position_embeds = F.embedding(height_position_ids, self.height_position_encodings) | |
width_position_embeds = F.embedding(width_position_ids, self.width_position_encodings) | |
return torch.cat([frame_position_embeds, height_position_embeds, width_position_embeds], dim = -1) | |
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava | |
class LlavaCausalLMOutputWithPast(ModelOutput): | |
""" | |
Base class for Llava causal language model (or autoregressive) outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss (for next-token prediction). | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) | |
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | |
`past_key_values` input) to speed up sequential decoding. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): | |
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, | |
sequence_length, hidden_size)`. | |
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[List[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
vision_outputs: Optional[torch.FloatTensor] = None | |
llm_attn_mask: Optional[Tuple[torch.FloatTensor]] = None | |
class LlavaMultiModalProjector(nn.Module): | |
def __init__(self, config: LlavaConfig): | |
super().__init__() | |
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) | |
self.act = ACT2FN[config.projector_hidden_act] | |
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) | |
def forward(self, image_features): | |
hidden_states = self.linear_1(image_features) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.linear_2(hidden_states) | |
return hidden_states | |
TARSIER_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`LlavaConfig`] or [`LlavaVisionConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class TarsierPreTrainedModel(PreTrainedModel): | |
config_class = LlavaConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["LlavaVisionAttention"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
def _init_weights(self, module): | |
# important: this ported version of Llava isn't meant for training from scratch - only | |
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase | |
# https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose | |
std = ( | |
self.config.initializer_range | |
if hasattr(self.config, "initializer_range") | |
else self.config.text_config.initializer_range | |
) | |
if hasattr(module, "class_embedding"): | |
module.class_embedding.data.normal_(mean=0.0, std=std) | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def _supports_sdpa(self): | |
""" | |
Retrieve language_model's attribute to check whether the model supports | |
SDPA or not. | |
""" | |
return self.language_model._supports_sdpa | |
TARSIER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): | |
The tensors corresponding to the input images. Pixel values can be obtained using | |
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses | |
[`CLIPImageProcessor`] for processing images). | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class TarsierForConditionalGeneration(TarsierPreTrainedModel): | |
def __init__(self, config: LlavaConfig): | |
super().__init__(config) | |
self.vision_tower = AutoModel.from_config(config.vision_config, trust_remote_code=True) | |
self.multi_modal_projector = LlavaMultiModalProjector(config) | |
self.vocab_size = config.vocab_size | |
self.language_model = AutoModelForCausalLM.from_config(config.text_config, attn_implementation="flash_attention_2") | |
image_newline_idx = torch.tensor([config.image_newline_idx], dtype=torch.long) | |
image_new_idx = torch.tensor([config.image_new_idx], dtype=torch.long) | |
self.register_buffer('image_newline_idx', image_newline_idx, persistent=False) | |
self.register_buffer('image_new_idx', image_new_idx, persistent=False) | |
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.language_model.get_input_embeddings() | |
def set_input_embeddings(self, value): | |
self.language_model.set_input_embeddings(value) | |
def get_output_embeddings(self): | |
return self.language_model.get_output_embeddings() | |
def set_output_embeddings(self, new_embeddings): | |
self.language_model.set_output_embeddings(new_embeddings) | |
def set_decoder(self, decoder): | |
self.language_model.set_decoder(decoder) | |
def get_decoder(self): | |
return self.language_model.get_decoder() | |
def tie_weights(self): | |
return self.language_model.tie_weights() | |
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: | |
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) | |
# update vocab size | |
self.config.text_config.vocab_size = model_embeds.num_embeddings | |
self.config.vocab_size = model_embeds.num_embeddings | |
self.vocab_size = model_embeds.num_embeddings | |
return model_embeds | |
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels): | |
num_images, num_image_patches, embed_dim = image_features.shape | |
batch_size, sequence_length = input_ids.shape | |
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id)) | |
# 1. Create a mask to know where special image tokens are | |
special_image_token_mask = input_ids == self.config.image_token_index | |
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) | |
# Compute the maximum embed dimension | |
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length | |
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index) | |
# 2. Compute the positions where text should be written | |
# Calculate new positions for text tokens in merged image-text sequence. | |
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens. | |
# `torch.cumsum` computes how each image token shifts subsequent text token positions. | |
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. | |
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1 | |
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] | |
if left_padding: | |
new_token_positions += nb_image_pad[:, None] # offset for left padding | |
text_to_overwrite = new_token_positions[batch_indices, non_image_indices] | |
# 3. Create the full embedding, already padded to the maximum position | |
final_embedding = torch.zeros( | |
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device | |
) | |
final_attention_mask = torch.zeros( | |
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device | |
) | |
if labels is not None: | |
final_labels = torch.full( | |
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device | |
) | |
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually | |
# set the corresponding tensors into their correct target device. | |
target_device = inputs_embeds.device | |
batch_indices, non_image_indices, text_to_overwrite = ( | |
batch_indices.to(target_device), | |
non_image_indices.to(target_device), | |
text_to_overwrite.to(target_device), | |
) | |
attention_mask = attention_mask.to(target_device) | |
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"] | |
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features | |
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] | |
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] | |
if labels is not None: | |
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] | |
# 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling | |
image_to_overwrite = torch.all(final_embedding == 0, dim=-1) | |
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device) | |
if image_to_overwrite.sum() != image_features.shape[:-1].numel(): | |
raise ValueError( | |
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while" | |
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation." | |
) | |
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) | |
final_attention_mask |= image_to_overwrite | |
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) | |
if labels is None: | |
final_labels = None | |
return final_embedding, final_attention_mask, final_labels, position_ids | |
def add_split_tokens(self, image_features): | |
num_images, num_image_patches, embed_dim = image_features.shape | |
num_height_patches, num_width_patches = int(math.sqrt(num_image_patches)), int(math.sqrt(num_image_patches)) | |
# add image_newline | |
image_newline = self.get_input_embeddings()(self.image_newline_idx).squeeze() | |
image_features = image_features.view(num_images, num_height_patches, num_width_patches, embed_dim) | |
image_features = torch.cat([ | |
image_features, | |
image_newline.expand((num_images, num_height_patches, 1, embed_dim)).to(device=image_features.device) | |
], dim=2) | |
num_image_patches += num_height_patches | |
image_features = image_features.view(num_images, num_image_patches, embed_dim) | |
# add image_new | |
image_new = self.get_input_embeddings()(self.image_new_idx).squeeze() | |
image_features = torch.cat([ | |
image_features, | |
image_new.expand((num_images, 1, embed_dim)).to(device=image_features.device) | |
], dim = 1) | |
return image_features | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
pixel_values: torch.FloatTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
vision_feature_layer: Optional[int] = None, | |
vision_feature_select_strategy: Optional[str] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**kwargs, | |
) -> Union[Tuple, LlavaCausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, LlavaForConditionalGeneration | |
>>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf") | |
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf") | |
>>> prompt = "<image>\nUSER: What's the content of the image?\nASSISTANT:" | |
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(text=prompt, images=image, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(**inputs, max_length=30) | |
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"\nUSER: What's the content of the image?\nASSISTANT: The image features a stop sign on a street corner" | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
vision_feature_layer = ( | |
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer | |
) | |
vision_feature_select_strategy = ( | |
vision_feature_select_strategy | |
if vision_feature_select_strategy is not None | |
else self.config.vision_feature_select_strategy | |
) | |
image_features = None | |
if inputs_embeds is None: | |
# 1. Extra the input embeddings | |
inputs_embeds = self.get_input_embeddings()(input_ids) | |
# 2. Merge text and images | |
if pixel_values is not None and input_ids.shape[1] != 1: | |
pixel_values = pixel_values.to(dtype=self.vision_tower.dtype) | |
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True) | |
# this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated. | |
selected_image_feature = image_outputs.hidden_states[vision_feature_layer] | |
if vision_feature_select_strategy == "default": | |
selected_image_feature = selected_image_feature[:, 1:] | |
elif vision_feature_select_strategy == "full": | |
selected_image_feature = selected_image_feature | |
else: | |
raise ValueError( | |
f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}" | |
) | |
image_features = self.multi_modal_projector(selected_image_feature) | |
special_image_token_mask = input_ids == self.config.image_token_index | |
num_special_image_tokens = torch.sum(special_image_token_mask, dim = -1) | |
image_features = self.add_split_tokens(image_features) | |
if sum(num_special_image_tokens) > 0: | |
# print(f'num_special_image_tokens: {num_special_image_tokens}') | |
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features( | |
image_features, inputs_embeds, input_ids, attention_mask, labels | |
) | |
else: | |
inputs_embeds = image_features.sum(dim=(0,1))[None, None, :] * 0. + inputs_embeds | |
if labels is None: | |
labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long) | |
else: | |
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of | |
# generation with cache | |
if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1: | |
# Retrieve the first layer to inspect the logits and mask out the hidden states | |
# that are set to 0 | |
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] | |
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 | |
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) | |
# Get the target length | |
target_seqlen = first_layer_past_key_value.shape[-1] + 1 | |
extended_attention_mask = torch.ones( | |
(attention_mask.shape[0], target_seqlen), | |
dtype=attention_mask.dtype, | |
device=attention_mask.device, | |
) | |
extended_attention_mask[batch_index, non_attended_tokens] = 0 | |
valid_indices = torch.ones_like(attention_mask) | |
valid_indices[:, 0] = target_seqlen - extended_attention_mask.sum(dim=-1) | |
valid_indices = torch.cumsum(valid_indices, dim=-1) | |
extended_attention_mask = extended_attention_mask.scatter(1, valid_indices, attention_mask) | |
attention_mask = extended_attention_mask | |
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 | |
outputs = self.language_model( | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
# use_rmpad=kwargs.get("use_rmpad", False), | |
return_dict=return_dict, | |
) | |
logits = outputs[0] | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
if attention_mask is not None: | |
shift_attention_mask = attention_mask[..., 1:] | |
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() | |
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() | |
else: | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct( | |
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) | |
) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return LlavaCausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
llm_attn_mask=attention_mask | |
) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, **kwargs | |
): | |
if past_key_values is not None: | |
if isinstance(past_key_values, Cache): | |
cache_length = past_key_values.get_seq_length() | |
past_length = past_key_values.seen_tokens | |
else: | |
cache_length = past_length = past_key_values[0][0].shape[2] | |
# Keep only the unprocessed tokens: | |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as | |
# input) | |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
# input_ids based on the past_length. | |
elif past_length < input_ids.shape[1]: | |
input_ids = input_ids[:, past_length:] | |
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
elif self.config.image_token_index in input_ids: | |
input_ids = input_ids[:, input_ids.shape[1] - 1 :] | |
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the | |
# older attention values, as their corresponding values are not part of the input. | |
if cache_length < past_length and attention_mask is not None: | |
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1] :] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
"pixel_values": pixel_values, | |
} | |
) | |
return model_inputs | |
def _reorder_cache(self, *args, **kwargs): | |
return self.language_model._reorder_cache(*args, **kwargs) | |