Tarsier2-7b / dataset /utils.py
omni-research's picture
init
97a05c0
raw
history blame
4.18 kB
# Copyright (2024) Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import os
from PIL import Image, ImageSequence
import decord
VALID_DATA_FORMAT_STRING = "Input data must be {'.jpg', '.jpeg', '.png', '.tif'} for image; or {'.mp4', '.avi', '.webm', '.mov', '.mkv', '.wmv', '.gif'} for videos!"
# 均匀抽帧,必采样首尾帧。
def sample_frame_indices(start_frame, total_frames: int, n_frames: int):
if n_frames == 1:
return [0] # sample first frame in default
sample_ids = [round(i * (total_frames - 1) / (n_frames - 1)) for i in range(n_frames)]
sample_ids = [i + start_frame for i in sample_ids]
return sample_ids
def sample_video(
video_path: str,
n_frames: int = None,
start_time: int = 0,
end_time: int = -1
) -> List[Image.Image]:
assert os.path.exists(video_path), f"File not found: {video_path}"
vr = decord.VideoReader(video_path, num_threads=1, ctx=decord.cpu(0))
vr.seek(0)
total_frames = len(vr)
fps = vr.get_avg_fps()
start_frame = 0
end_frame = total_frames - 1
if start_time > 0:
start_frame = min((total_frames-1), int(fps*start_time))
if end_time > 0:
end_frame = max(start_frame, int(fps*end_time))
end_frame = min(end_frame, (total_frames-1))
frame_indices = sample_frame_indices(
start_frame=start_frame,
total_frames=end_frame - start_frame + 1,
n_frames=n_frames,
)
frames = vr.get_batch(frame_indices).asnumpy()
frames = [Image.fromarray(f).convert('RGB') for f in frames]
return frames
def sample_gif(
gif_path: str,
n_frames:int = None,
start_time: int = 0,
end_time: int = -1
) -> List[Image.Image]:
assert os.path.exists(gif_path), f"File not found: {gif_path}"
gif_frames = Image.open(gif_path)
start_frame = 0
end_frame = gif_frames.n_frames - 1
frame_indices = sample_frame_indices(
start_frame=start_frame,
total_frames=end_frame - start_frame + 1,
n_frames=n_frames,
)
frames = []
i = 0
for frame in ImageSequence.Iterator(gif_frames):
if i in frame_indices:
frames.append(frame.convert('RGB'))
i += 1
return frames
def sample_image(
image_path: str,
n_frames: int = None,
start_time: int = 0,
end_time: int = -1
):
assert os.path.exists(image_path), f"File not found: {image_path}"
image = Image.open(image_path).convert('RGB')
return [image]
def get_visual_type(input_file):
ext = os.path.splitext(input_file)[-1]
if ext in {'.gif'}:
return 'gif'
elif ext in {'.mp4', '.avi', '.webm', '.mov', '.mkv', '.wmv'}:
return 'video'
elif ext in {'.jpg', '.jpeg', '.png', '.tif'}:
return 'image'
else:
print(f"{VALID_DATA_FORMAT_STRING} But found {ext}!")
return 'unk'
def get_benchmarks(benchmarks):
final_benchmarks = []
type2bm = {
'dream': ['dream'],
'caption': ['msvd-caption', 'msr-vtt-caption', 'vatex-caption'],
'mc_qa': ['next-qa', 'egoschema', 'mvbench', 'video-mme'],
'oe_qa': ['msvd-qa', 'msr-vtt-qa', 'tgif-qa', 'anet-qa'],
}
for bm in benchmarks:
bm = bm.lower()
if bm in final_benchmarks:
continue
if bm == 'all':
for v in type2bm.values():
final_benchmarks.extend(v)
return final_benchmarks
if bm in type2bm:
final_benchmarks.extend(type2bm[bm])
else:
final_benchmarks.append(bm)
return final_benchmarks