Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (2024) Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List | |
import os | |
from PIL import Image, ImageSequence | |
import decord | |
VALID_DATA_FORMAT_STRING = "Input data must be {'.jpg', '.jpeg', '.png', '.tif'} for image; or {'.mp4', '.avi', '.webm', '.mov', '.mkv', '.wmv', '.gif'} for videos!" | |
# 均匀抽帧,必采样首尾帧。 | |
def sample_frame_indices(start_frame, total_frames: int, n_frames: int): | |
if n_frames == 1: | |
return [0] # sample first frame in default | |
sample_ids = [round(i * (total_frames - 1) / (n_frames - 1)) for i in range(n_frames)] | |
sample_ids = [i + start_frame for i in sample_ids] | |
return sample_ids | |
def sample_video( | |
video_path: str, | |
n_frames: int = None, | |
start_time: int = 0, | |
end_time: int = -1 | |
) -> List[Image.Image]: | |
assert os.path.exists(video_path), f"File not found: {video_path}" | |
vr = decord.VideoReader(video_path, num_threads=1, ctx=decord.cpu(0)) | |
vr.seek(0) | |
total_frames = len(vr) | |
fps = vr.get_avg_fps() | |
start_frame = 0 | |
end_frame = total_frames - 1 | |
if start_time > 0: | |
start_frame = min((total_frames-1), int(fps*start_time)) | |
if end_time > 0: | |
end_frame = max(start_frame, int(fps*end_time)) | |
end_frame = min(end_frame, (total_frames-1)) | |
frame_indices = sample_frame_indices( | |
start_frame=start_frame, | |
total_frames=end_frame - start_frame + 1, | |
n_frames=n_frames, | |
) | |
frames = vr.get_batch(frame_indices).asnumpy() | |
frames = [Image.fromarray(f).convert('RGB') for f in frames] | |
return frames | |
def sample_gif( | |
gif_path: str, | |
n_frames:int = None, | |
start_time: int = 0, | |
end_time: int = -1 | |
) -> List[Image.Image]: | |
assert os.path.exists(gif_path), f"File not found: {gif_path}" | |
gif_frames = Image.open(gif_path) | |
start_frame = 0 | |
end_frame = gif_frames.n_frames - 1 | |
frame_indices = sample_frame_indices( | |
start_frame=start_frame, | |
total_frames=end_frame - start_frame + 1, | |
n_frames=n_frames, | |
) | |
frames = [] | |
i = 0 | |
for frame in ImageSequence.Iterator(gif_frames): | |
if i in frame_indices: | |
frames.append(frame.convert('RGB')) | |
i += 1 | |
return frames | |
def sample_image( | |
image_path: str, | |
n_frames: int = None, | |
start_time: int = 0, | |
end_time: int = -1 | |
): | |
assert os.path.exists(image_path), f"File not found: {image_path}" | |
image = Image.open(image_path).convert('RGB') | |
return [image] | |
def get_visual_type(input_file): | |
ext = os.path.splitext(input_file)[-1] | |
if ext in {'.gif'}: | |
return 'gif' | |
elif ext in {'.mp4', '.avi', '.webm', '.mov', '.mkv', '.wmv'}: | |
return 'video' | |
elif ext in {'.jpg', '.jpeg', '.png', '.tif'}: | |
return 'image' | |
else: | |
print(f"{VALID_DATA_FORMAT_STRING} But found {ext}!") | |
return 'unk' | |
def get_benchmarks(benchmarks): | |
final_benchmarks = [] | |
type2bm = { | |
'dream': ['dream'], | |
'caption': ['msvd-caption', 'msr-vtt-caption', 'vatex-caption'], | |
'mc_qa': ['next-qa', 'egoschema', 'mvbench', 'video-mme'], | |
'oe_qa': ['msvd-qa', 'msr-vtt-qa', 'tgif-qa', 'anet-qa'], | |
} | |
for bm in benchmarks: | |
bm = bm.lower() | |
if bm in final_benchmarks: | |
continue | |
if bm == 'all': | |
for v in type2bm.values(): | |
final_benchmarks.extend(v) | |
return final_benchmarks | |
if bm in type2bm: | |
final_benchmarks.extend(type2bm[bm]) | |
else: | |
final_benchmarks.append(bm) | |
return final_benchmarks | |