|
|
from __future__ import annotations |
|
|
|
|
|
import os |
|
|
|
|
|
import tensorflow as tf |
|
|
from tensorflow.keras.layers import (Activation, Bidirectional, Conv3D, Dense, |
|
|
Dropout, Flatten, LSTM, MaxPool3D, |
|
|
TimeDistributed) |
|
|
from tensorflow.keras.models import Sequential |
|
|
|
|
|
|
|
|
|
|
|
tf.config.set_visible_devices([], 'GPU') |
|
|
|
|
|
def load_model() -> Sequential: |
|
|
model = Sequential() |
|
|
|
|
|
model.add(Conv3D(128, 3, input_shape=(75,46,140,1), padding='same')) |
|
|
model.add(Activation('relu')) |
|
|
model.add(MaxPool3D((1,2,2))) |
|
|
|
|
|
model.add(Conv3D(256, 3, padding='same')) |
|
|
model.add(Activation('relu')) |
|
|
model.add(MaxPool3D((1,2,2))) |
|
|
|
|
|
model.add(Conv3D(75, 3, padding='same')) |
|
|
model.add(Activation('relu')) |
|
|
model.add(MaxPool3D((1,2,2))) |
|
|
|
|
|
model.add(TimeDistributed(Flatten())) |
|
|
|
|
|
model.add(Bidirectional(LSTM(128, kernel_initializer='Orthogonal', return_sequences=True))) |
|
|
model.add(Dropout(.5)) |
|
|
|
|
|
model.add(Bidirectional(LSTM(128, kernel_initializer='Orthogonal', return_sequences=True))) |
|
|
model.add(Dropout(.5)) |
|
|
|
|
|
model.add(Dense(41, kernel_initializer='he_normal', activation='softmax')) |
|
|
|
|
|
base_dir = os.path.dirname(os.path.abspath(__file__)) |
|
|
weights_path = os.path.abspath(os.path.join(base_dir, '..', 'models', 'checkpoint')) |
|
|
if not os.path.exists(weights_path): |
|
|
raise FileNotFoundError(f"Model weights not found at {weights_path}") |
|
|
model.load_weights(weights_path) |
|
|
|
|
|
return model |
|
|
|